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We use the semi-nonparametric (SNP) model to study the relationship between the 

innovation of the Volatility Index (VIX) and the expected S&P 500 Index (SPX) 
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GARCH effect. Results agree with a body of newly established literature arguing 

non-linearity, and asymmetries. In addition, the risk-return behaviour depends on the 

signs as well as magnitudes of the perceived risk. We conclude that influence of fear 

or exuberance on the conditional market return is non-monotonic and hump-shaped. 

Very deep fear does not necessarily mean huge losses, instead, the loss may not be as 

bad as fears of normal levels. Results pass the robustness tests.  
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1. Introduction 

The relationship between risk and return is crucial in the finance world. Whether or 

not asset prices and hence expected return should reflect investors’ willingness to bear 

risk attracts tremendous attention and there has been a huge body of literature 

contributed to this topic. It is important in asset pricing, hedging, derivative pricing 

and risk management. But there is an ongoing debate on the nature of the risk-return 

relationship. Standard finance theory, e.g., Merton’s (1973, 1980) Intertemporal 

Capital Asset Pricing Model (ICAPM) implies that the cross-section of stock returns 

should be affected by systematic volatility and this relation turns out to be linear and 

positive. Similar results are also indicated by Ghysels et al. (2005) using weighted 

rolling sample windows in the variance measurements. For a survey of these and 

related studies, see Lettau and Ludvigson (2009). 

Motivated by Merton’s work, many other studies, e.g. Campbell (1987) and Glosten 

et al. (1993), find evidence of a negative relation using US datasets. Brandt and Kang 

(2004) model the conditional mean and volatility of stock returns as a latent VAR 

process without relying on exogenous predictors. They also find a negative correlation 

between the innovations to the conditional moments leading to pronounced 

counter-cyclical variation in the Sharpe ratio. Harvey (2001), on the other hand, uses 

exogenous predictors and concludes that the correlation between the moments 

generally depends on the model and the information set used in conditional moments. 

Recent work in asset pricing on the question of volatility innovations studies the 

cross- sectional risk premia induced by covariance between volatility changes and 

stock returns and finds negative premia, e.g., Ang et al. (2006). A sensible explanation 

resides in a scenario where a volatile time of period (such as a recession) comes, 

co-varing stocks (in term of volatility) pay off and hence are required for less premia. 

While Ang et al. show that the cross-sectional pricing of sensitivity to innovations 

in implied market volatility is robust, it does not account for the asymmetric return 

responses to positive and negative changes in expected systematic volatility, as found 

by Dennis et al. (2006). Thus, the relation between sensitivity to market volatility 

innovations and returns may not yet be fully understood. We hence propose a new 

fundamental work to reveal the relation between market returns and expected 

volatility changes while allowing for asymmetric volatility responses on a time-series 

dimension. We find that the asymmetric volatility phenomenon is an important 

element in the return process. The coexistence of negative and positive relationship is 

unearthed and is subject to non-monotonic trend. 

Our paper implies the possibility that the expected risk-return trade-off documented 

in literature might be subject to misspecified models and most importantly, the sign as 

well as magnitude of market sentiment changes. As clearly stated in Christensen et al. 

(2010) that restrictive linear conditions are unreasonable and inconsistent to empirical 

fact, we therefore use semi-nonparametric (SNP) models to nest explicit expected risk 

metrics (proxied by the innovation in the Volatility Index (VIX)) and the total S&P 

500 Index (SPX) returns. The choice of the risk measurement is justified by Chen 

(2003) who demonstrates that changes in the expectation of future market volatility 



3 

are a source of risk. Our bivariate system is led by a flexible GARCH term which 

allows leverage effect or complex non-parametric characteristics.
1
The SNP model in 

our paper enables us to exploit potential asymmetries and non-monotonic nonlinearity 

which was pioneered by Pagan and Hong (1991). They argue that the risk premium, μt, 

and the conditional variance, σt
2
, are highly non-linear functions of the past whose 

form is not captured by standard parametric GARCH-M models. 

Recent scholars also generalize GARCH-family models to explain the non-linear 

risk-return relationship. Following the conjecture of inadequacy in non-linearity by 

Das and Sarkar (2000) using an ARCH-in-Nonlinear-Mean (ARCH-NM) model,
2 

Linton and Perron (2003) step forward by suggesting an algorithm to allow a 

satisfactory non-linear property. Linton and Perron’s (2003) model is semiparametric 

in the sense that it is parametric in the conditional variance function while at the same 

time allowing for an arbitrary functional form to describe the relationship between 

risk and returns at market level. An application of their theory to the exponential 

GARCH-M model uncovers a non-linear and non-monotonic relationship. Similar 

work but revised estimators in the conditional variance function based on the 

GARCH-M model also finds its way in Conrad and Mammen (2008), and a simpler 

version (without testing the parametric specification of the mean function) of the 

model is derived by Christensen et al. (2010). 

We also propose to use a semi-nonparametric tool to study the risk-return relation, 

but in a quite different way. 

First, we do not add in any GARCH-family model unconditionally, and even when 

the model selecting procedure does imply the GARCH effect, it is still subject to 

diagnostic tests and potential expansion in the conditional mean term. More 

specifically, the conditional one-step ahead joint density starts from a standard normal 

distribution and is optimally expanded using Hermite polynomials and estimated by 

maximum likelihood (ML) method. This SNP procedure has been developed recently 

by Gallant and Tauchen (2006) to nest a generalized asymmetric VAR-GARCH model 

as its leading density together with the leverage effect. The advantage of adopting 

such a strategy lies in the fact that a specific predetermined functional form of the 

risk-return correlation is sometimes redundant and an adequate but parsimonious 

model which nests necessary observed information might be a better choice. 

Second, on the aspect of choosing the metrics of risk, we follow the work by Chen 

(2003), who demonstrates that changes in the expectation of future market volatility 

are a source of risk. This prediction is later on verified by Ang et al. (2006), in which 

they find that sensitivities to changes in implied market volatility have a 

cross-sectional effect on firm-level returns. In our paper, we choose the daily 

innovation in the implied volatility (CBOE VIX) as a proxy of change in the expected 

market volatility on the time series dimension. 

                                                             
1  Models are selected based on Baysian information criteria and author-designed diagnostics. For detailed 

procedures of Hermite expansion whilst alowing different leading terms, readers are advised to refer to the work by 

Gallant and Tauchen (2006). 

2 Das and Sarkar (2000) defines the risk premium as a Box-Cox power transformation of the conditional variance. 
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We find insufficient literature that contributes to direct estimations of the relation 

between the innovations of VIX and market returns. A critical question that needs to 

be answered is to what extent and how the sentiment shifts (fear or exuberance) 

change expected market returns. In other words, should Chen’s (2003) argument hold, 

risk perception would be reflected in market returns through shifts in sentiment. 

Significant literature, however, shows the asymmetry where positive returns are 

associated with smaller changes in implied volatilities than negative returns of the 

same magnitude. Specifically, Dennis et al. (2006) examine the relation between stock 

returns and VIX allowing for stock returns to react asymmetrically to volatility shocks. 

Their goal, however, is to determine if the asymmetric volatility phenomenon stems 

from systematic or idiosyncratic effects but not directly test for a risk-return relation. 

However, we conclude that the contemporaneous risk-return behaviour depends not 

only on the sign of risk metrics (sentiment shifts), but also on the magnitudes of the 

change. In other words, fear or exuberance (extreme innovation of VIX) does 

correlate to conditional return, but the correlation is non-monotonic and hump-shaped. 

On the one hand, very deep fear does not necessarily mean huge losses, instead, the 

loss may not be as bad as fears of normal levels, while on the other, exuberance does 

not correlated to big returns. 

Finally, the present paper is different from a similar work by Christensen and 

Nielsen (2007), in which a negative but monotonic relation is found and hence is 

consistent with the cross-sectional case by considering aggregated returns and 

volatility innovations in both realized and implied volatility. Our results partly agree 

on their conclusion. We argue that the negativity is subject to the magnitude of 

innovations of the expected volatility and that a positive relation also exists given 

dramatic changes of sentiment, so that a non-monotonic relationship seems to be the 

full story. Empirical threshold is also given. 

Our method is also different from an SNP estimation by Linton and Perron (2003), 

who find a non-monotonic, hump-shaped risk premium-variance relation using a 

non-parametric EGARCH model. We, however, do not estimate the conditional 

variance of returns, but instead examine the marginal density and moments of 

conditional returns against innovations of the implied volatility. Therefore, our 

metrics of risk is proxied by the fear gauge or change of sentiment/expectation. 

Nonetheless, our framework is not intended to be predictive or keen to solve some 

causal link of anything, but merely to directly illustrate the conditional 

contemporaneous risk-return relation. And the relation is also allowed to change 

conditional on the contemporaneous market condition and on how much the VIX 

increases or decreases. The paper can be thought as an extension of Christensen et al. 

(2010) on the dimension of nesting not only the signs but also magnitudes of 

innovations as the information set. Our results partly agree with Linton and Perron 

(2003), in which we also show a hump-shaped pattern of the total returns relative to 

risk perceptions but it turns out to be more smooth. And the robustness check 

indicates our model works reasonably well. 

This paper is organized as follows: Section II explains the dataset and adjustment; 

Section III exhibits the estimation strategy and model specifications; Section IV and V 
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discuss the empirical models and results; Section VI shows the robustness tests; and 

finally, Section VII delivers the conclusion. 

 

2. Data Description 

2.1 Risk metrics: innovation of VIX 

Lots of study on volatility dynamics relies on volatility estimated from historical 

data (namely, the realized volatility), but statistical estimation may produce sampling 

and model specification errors. Its lack of prediction power also limits the connection 

to real trading. We tend to care more about the expectation of the future realized 

volatility, especially the downside volatility, namely the risk. There hence exist 

incentives to use some ex ante measurement which directly targets an estimation of 

such risks. 

The use of such a proxy of risk as changes in the implied volatility is justified 

thanks to a pioneer work by Chen (2003) which demonstrates that changes in the 

expectation of future market volatility are a source of risk. This prediction is further 

verified by Ang et al. (2006), where they find that sensitivities to changes in implied 

market volatility have a cross-sectional effect on firm-level returns. There is also a 

body of literature that uses the innovation of VIX as a measurement of risk, for 

example, a recent work by Dennis et al. (2006) examines the relation between stock 

returns and VIX allowing for stock returns to react asymmetrically to volatility shocks. 

Their goal, however, is to determine if the asymmetric volatility phenomenon stems 

from systematic or idiosyncratic effects while not directly testing for a risk-return 

relation. A paper by Christensen and Nielsen (2007) also uses the same innovation of 

VIX. Their conclusion suggests a monotonic negative relation by considering 

aggregated returns and volatility innovations in both realized and implied volatility. 

In the present paper, we choose the innovation of the CBOE VIX as a risk metrics. 

Specifically, we calculate the daily innovation as a proportion of the previous-day 

VIX levels (namely the percentage change of VIX, denoted by %VIX) to be a proxy 

of change in the expected market volatility. Financial literature finds conclusive 

evidence of the relation between the implied volatility and the realized volatility. Such 

literature can date back to the work by Feinstein (1989) which demonstrates that 

implied volatility from ATM and near expiration option provides the closest 

approximation to the average volatility over the life of the option. Poon and Granger 

(2003) review 93 papers regarding the forecasting performance of various volatility 

models (historical, stochastic and implied volatility). Their key conclusion is that the 

performance of option implied standard deviation outstands that of the alternative 

methods. 

More recent articles dealing with the US equity markets suggest that, in general, 

implied volatility is a superior predictor of future volatility. Three representative 

articles are by Giot, Jiang and Tian, and Core and Miller. Giot (2005) evaluates the 

information content of VIX and VXN as the predictors of the realized volatility and 

finds meaningful forecasting results. Similarly, Corrado and Miller (2005) report that 

the CBOE implied volatility indices (VIX, VXO and VXN) act as an outperforming 

estimators of the future realized volatility compared to the forecast from the historical 
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volatility. Jiang and Tian (2005) investigate the characteristics of the model-free 

approximation. They discover that the model-free implied variance, represented by 

the new VIX, subsumes all information contained in the Black-Scholes implied 

volatility. 

As for the performance of the implied volatility outside the US, empirical findings 

are mainly consistent with those dealing with the implied volatility in the US. 

Although Dowling and Muthuswamy (2005) report that their Australian implied 

volatility index is a poor predictor of the future realized volatility, Bluhm and Yu 

(2001), Skiadopoulos (2004), Nishina et al. (2006) and Areal (2008) all find their 

implied volatility indices are superior estimators of the future standard deviation. 

The CBOE VIX, introduced in 1993, quickly became the benchmark for stock 

market volatility. It is widely followed and cited in hundreds of new articles in the 

Wall Street Journal, Barron’s and other leading financial publications. The VIX 

measures market expectations of near term volatility conveyed by stock index option 

prices. Since the VIX signifies financial turmoil, it is commonly referred to as the 

‘investor fear gauge’ by market practitioners and academics as well. The VIX is based 

on weighted averages of Black-Scholes put and call implied volatility and it is 

designed to be a forward-looking measure of volatility which predicts the volatility of 

the following 30 calendar days (22 trading days for estimation purpose) for the S&P 

500 index (CBOE ticker: SPX). Since the depth of the index option market ensures 

that transacted prices are representative of the aggregate consensus, the VIX index is 

often regarded as market participants’ best guess of the volatility associated with the 

SPX index. 

Since the VIX is not a statistical estimated volatility, it does not induce traditional 

estimation errors. Moreover, model misspecification error is relatively small 

compared to statistical volatility metrics, insofar as the underlying option-pricing 

model based on the work of Black and Scholes (1973) and Merton (1973) is robust 

and widely used in the market. 

2.2 Dataset 

Return dataset is the total daily returns of the S&P500 index (CBOE ticker: SPX) 

and the daily innovation of CBOE implied volatility (CBOE ticker: VIX) in terms of 

percentage change (denoted by %VIX). 

The data period is between 2 January 1990 and 29 December 2006, where 2 

January 1990 is the introduction date of the VIX when it was officially traded in the 

market. The VIX is based on forming portfolios of European options and measures 

the market’s expectation of te next 30 calendar days (22 trading days) forward 

S&P500 index volatility implicit in the index option prices. 

Plots of the SPX index and VIX are shown in Figure 1, in which the dotted line is 

the raw VIX level and the solid line is the SPX index. Intuitively, when SPX goes up, 

it tends to calm the market, so that the VIX displays a decline and vice versa, but this 

is not always true. Figure 2 shows a mean-reverting process for the return series, but 
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outliers seem to play a role.
3 

2.3 Seasonal effects 

To adjust seasonalities, we use dummy-variable models to identify seasonal effects. 

The following dummies are considered: 

• Day-of-the-week dummies (one for each day, Tuesday through Friday); 

 

Figure 1. VIX level and SPX level. 

 

Figure 2. SPX return and %VIX. 

• Dummies for each number of non-trading days preceding the current trading 

day(one non-trading day: 39, two non-trading days: 781, and three non-trading days: 

105); 

• Dummies for months of March, April, May, June, July, August, September, October, 

and November; 

• Dummies for each week of December and January; 

                                                             
3 Adjustment is introduced separately using a spline function to the original dataset to eliminate the outlier effect 

as can be found in later sections. Similar adjustment is also used by Gallant et al. (1992). 
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• t, t2 trend variables (not included in the mean regressions for the price change). 

We first regress the SPX total returns and the %VIX on these dummies respectively 

to do a mean adjustment (location adjustment) and then regress the residuals from 

previous models on these dummies to do a variance adjustment. 

More specifically, the location adjustment is: 

w u (mean equation) 

where w is the series to be adjusted (dataset) and x contains the adjustment regressors 

(dummies). The least squares residuals (u) are taken from the mean equation to 

construct a variance equation, and the variance equation is used to standardize the 

residuals from the mean equation. 

ϵ  (variance equation) 

Finally, a final linear transformation is performed to calculate the adjusted w: 

wadj = a  

where a and b are chosen so that the sample means and variances of w and wadj are the 

same. The linear transformation makes the units of measurement of adjusted and 

unadjusted data the same, which facilitates interpretation of our empirical results. 

In our research, however, we find that all coefficients for seasonal dummies of both 

conditional mean and variance equations are generally insignificant. As a result, the 

fitted conditional mean and variance curves should not be very smooth and there 

should be local maxima in the process of estimation. Therefore, if we adjust the 

seasonal effects unconditionally, the procedure itself will make the adjusted data 

series spurious simply because datasets of SPX returns and VIX innovations suggest 

little evidence of seasonal effects. The exact SAS procedure can be obtained by 

request. Results are listed in Appendix I. 

 

2.4 Outliers 

For occasional outliers in our dataset we introduce a spline treatment as follows to 

the raw dataset to eliminate such effects: 

 

where xi denotes an element of xt−1 (lagged raw datasets). This is a trigonometric 

spline transformation that has no effect on values of xi within [−σtr, σtr], but 

progressively compresses values that exceed ±σtr. 

Because it affects only yt−1,..., yt−L (the conditioning set) and not yt (data), so the 

asymptotic properties of SNP estimators are unaltered. 

For data from financial markets, Gallant and Tauchen (2006) cited a huge amount 

of empirical evidence that suggests a long simulation from a fitted model has 

unconditional variance and kurtosis much larger than the variance and kurtosis of the 
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sample. When the spline transform is imposed, this anomaly is effectively eliminated 

while the estimated coefficients and the value of likelihood are not much affected. 

Thanks to their contribution we can apply spline transformations to the xt−1 that enters 

P(z, x), μx, and x with σtr = 2. The order the transformations are implemented is as 

follows: 

 

where all inputs and outputs are in the units of the raw data . 

 

3. Model of Density 

The present work begins with an examination of the characteristics of the law of 

motion itself, with the primary objective to determine the extent to which it deviates 

from the Gaussian vector autoregressive (VAR) model. Elaborating on a paper by 

Phillips (1983) and Gallant and Nychka (1987), in which they propose to approximate 

the unknown density in a model by Hermite series. This approach finally develops to 

a parsimonious but sufficient procedure of empirical density function by Gallant and 

Tauchen (1999). This estimation strategy is called the SemiNonParametric (SNP) 

methodology, which is an approach that applies conventional estimation and testing to 

models derived from series expansions. 

The method is based on the notion that a Hermite expansion can be used as a 

general approximation to an empirical density function. Let z denote a vector of a 

dimension M, the probability density of this vector can be written as an approximation 

by Hermite polynomials (namely the Hermite density) which is of the form, 

                       (1) 

where ρ(z) denotes a multivariate polynomial of degree Kz and φ(z) denotes the 

density function of a multivariate Gaussian distribution with mean zero and the 

identity as its variance-covariance matrix. Denote the coefficient vector of ρ (z) by a 

whose length depends on Kz and M. The constant factor  makes sure h (z) 

to integrate to one. 

Given the Hermite density above in Equation (1), we can easily expand the density 

even further by allowing conditional heteroskedasticities, heterogeneities and 

potential interactions in the multivariate case. The variables within y (the dataset) are 

standardized using the location scale transformation y = Rz + μ, where R is an upper 

triangular matrix and μ is an M-vector, gives 

             (2) 

Because φ[R
−1

(y − μ)]/|det(R)| is the density function of the M-dimensional, 
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multivariate, Gaussian distribution with mean μ and variance-covariance matrix Σ 

, and because the leading term of the polynomial part is one, then the leading 

term of the entire expansion is proportional to the multivariate, Gaussian density 

function. Denote the Gaussian density of dimension M with mean vector μ and 

variance-covariance matrixΣby nM (y|μ, Σ) and write 

                      (3) 

where z = R
−1

(y − μ). And the parameter set θ is made up of the coefficients a of the 

polynomial ρ(z) together with μ and R and they are estimated by maximum likelihood. 

When Kz is put to zero, one gets f (y|θ) = nM (y|μ, Σ) exactly because the leading term 

in the Hermite expansion of [ρ(z)]
2 

is one. When Kz is positive, one gets a Gaussian 

density whose shape is modified due to multiplication by a polynomial [ρ(z)]
2
. The 

shape modifications thus can be arbitrarily rich and hence give increasing precision of 

the density approximation as Kz becomes large. 

It is also possible that some heterogeneity property exists (the distribution of zt 

depends on xt−1). In this case, each coefficient of the polynomial ρ(z) is a polynomial 

of degree Kx in x (same as xt−1). Denote this polynomial by ρ(z, x). Denote the 

mapping from x to the coefficients a of ρ(z) such that ρ(z|ax) = ρ(z, x) by ax and the 

number of lags on which it depends by L p. The form of the density with this 

modification is 

                      (4) 

where yt = Rzt + μx, and μx is a linear function that depends on Lu lags, 

μx = b0 + Bxt−1                          (5) 

So if Kx is put to a positive integer, the shape of the density will depend upon x. Hence, 

all moments can depend upon x and the density can, in principle, approximate any 

form of conditional heterogeneity (Gallant and Tauchen, 1999; Gallant et al., 1991). 

It is obvious that the leading term of the expansion is nM ) which is called the 

Gaussian vector auto regression or Gaussian VAR. When Kz is put to non-zero, one 

gets a semiparametric VAR density that can approximate well over a large class of 

densities whose first moment depends linearly on x according to Equation (5) and 

whose shape is constant with respect to variation in x. 

For the case of M >1(multivariate estimation), a number of interactions (cross 

product terms) for even modest settings of degree Kz would exist. Accordingly, 

additional tuning parameters, Iz and Ix are introduced in estimations to control higher 

order interactions. 

In practice, the leading term nM ) can be put to a Gaussian GARCH rather 

than a Gaussian VAR. The form is: 

                                             (6) 
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                                     (7) 

                      (8) 

          (9) 

                               (10) 

where R0 is a factorized upper triangular matrix, the matrices Pi, Qi, Vi and Wi can be 

scalar, diagonal or full M by M matrices, the notation x(1),t−i indicates that only the 

first column of x(1),t−i enters the computation, and the max(0, x) function is applied 

elementwise. Accordingly we call these four types of heteroscedasticities Q-type, 

P-type, V-type, and W-type, and the lags of xt−1 on which they depend are denoted as 

Lg, Lr, Lv and Lw, respectively. Clearly if Lr >0, an ARCH effect is present, which 

makes the leading term a Gaussian ARCH, and when Lg >0, and Lr >0 at the same 

time a GARCH effect is entering the leading term, which is of the form of Gaussian 

GARCH. 

Therefore a much general leading term is achieved by allowing conditional 

heteroskedasticity, so with  specified as either an ARCH or GARCH as above, 

the form of the conditional density becomes: 

 

                  (11) 

 

where zt = Rx
−1

(y − μx). And all the coefficients are arranged inside the vector of θ, 

 

in which a0 is the subset of a that does not depend on x, and A controls the mapping 

from x to the subset of a that does depend on x. The parameters of the location 

function are [b0|B] whose length is controlled by Lu. The other variables in θ are all 

stated in above texts. And all these parameters are estimated by maximum likelihood 

estimation. 

To sum up, as seen in Table 1, the SNP method employs an expansion in Hermite 

functions to approximate the conditional density of a multivariate process by setting 

principal tuning parameters and hence different model modifications away from a 

Gaussian distribution can be achieved. 

An appealing feature of this expansion is that it is a non-linear non-parametric 

model that directly nests the Gaussian VAR model, the semi-parametric VAR model, 

the Gaussian ARCH model, the semi-parametric ARCH model, the Gaussian GARCH 

model, and the semiparametric GARCH model. The SNP model is fitted using 
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conventional maximum likelihood together with a model selection strategy 

determining the appropriate order of expansion. 

 

TABLE 1 

Model Types and Principal Tuning Parameters 

 

 

 

 

 

 

 

 

 

 

 

 

4. Empirical Evidence 

Results of the SNP model specifications and diagnostic tests are summarized in 

Table 2 for both bivariate models (Panel A and B) and univariate models (Panel C), in 

which all the values are comparable and they are listed in a way along the excessively 

rich parameterization (increasing Pθ), and the ‘Obj.’ column contains minimized 

negative log-likelihoods in each set of SNP estimation, and the column labelled ‘BIC’ 

indicates the Schwarz information criterion. All the other labels in Table 2 have 

already been defined in the previous section. 

Among the models in Panel A of Table 2 which specify the ARCH-leading models 

in the bivariate Hermite density expansion, the Schwarz-preferred model has Lu = 3, Lr 

= 13, L p = 1, Iz = Ix = 0,and Kz = 4 with Pθ = 51. Under this specification the short-term 

diagnostic Wilks’s lambda is significant for the conditional mean regression. This 

indicates that there exists short-term conditional heterogeneity that is not accounted 

for by the current model specification. Separately, the short-term conditional variance 

is adequately approximated. Therefore a single Schwarz criterion turns out to be too 

aggressive to cut down further extension of non-linear property (the case of Kx >0) 

from entering the Hermite density specification. This fact can be found by comparing 

the 8th and the 9th row in Panel A where the BIC shows a jump in value when Kx 

moves from 0 to 1, whereas the specification test based on Wilks’s lambda on 

conditional mean moves from significant to highly insignificant in the mean time. 

The GARCH-leading term SNP bivariate model shown in Panel B of Table 2 

indicates that the Schwarz-preferred model has Lu = 3, Lg = 1, Lv = 1, Lr = 1, L p = 1, Iz 

= Ix = 0,and Kz = 4 with Pθ = 29, while the short-term diagnostic Wilks’s lambda is 

significant for the conditional mean. It suggests an insufficiency to fully explain the 

heterogeneity. We hence increase Kx (the degree of polynomials in the coefficients of 

Hermite expansion ρ(z, x) in both ARCH-leading and GARCH-leading models) and 

find the optimized value is Kx = 1 under both leading terms, but the BICs increase by 

  Parameter setting  Characterization of {yt} 

Lu = 0 

Lu > 0 

Lu > 0 

Lu ≥ 0 

Lu ≥ 0 

Lu ≥ 0 

Lu ≥ 0 

Lu ≥ 0 

Lg = 0 

Lg = 0 

Lg = 0 

Lg = 0 

Lg = 0 

Lg > 0 

Lg > 0 

Lg ≥ 0 

Lr = 0 

Lr = 0 

Lr = 0 

Lr >0 

Lr >0 

Lr >0 

Lr >0 

Lr ≥ 0 

Lp ≥ 0 

Lp ≥ 0 

Lp ≥ 0 

Lp ≥ 0 

Lp ≥ 0 

Lp ≥ 0 

Lp ≥ 0 

Lp > 0 

Kz = 0 

Kz = 0 

Kz ≥ 0 

Kz = 0 

Kz >0 

Kz = 0 

Kz >0 

Kz >0 

Kx = 0 

Kx = 0 

Kx = 0 

Kx = 0 

Kx = 0 

Kx = 0 

Kx = 0 

Kx > 0 

iid Gaussian Gaussian 

VAR semi-parametric 

VAR Gaussian ARCH 

semi-parametric ARCH 

Gaussian GARCH 

semi-parametric 

GARCH non-linear 

non-parametric 
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less than 0.002 compared with the models with Kx =0. However, by doing so, the 

short-term diagnostic tests are highly insignificant which suggests the Hermite 

expansions deviate little from the truth. In other words, the customized diagnostics 

can be seen as a remedy to compensate the conservative and aggressive properties of 

the BIC. Therefore, the BIC-preferred fittings further justified by diagnostics can then 

be trusted to be parsimonious enough as well as reflecting the true data generating 

process with little lack of explanatory variables. It is clear a parsimonious 

GARCH-leading SNP model dominates a large ARCH-leading term model because of 

smaller BIC and the diagnostics from our results in Table 2. Diagnostics apart from 

the information criteria are also suggestions by Gallant and Tauchen (2006) but exact 

procedures vary across literature. 

In past decades, the risk-return relationship has been examined by lots of 

researchers but it is still open to further study. Some issues pertain to the predictability 

of price changes, the nature of the relationship between price changes and volatility, 

and the shape characteristics of the probability density of price changes. Others 

concern asymmetry of the conditional variance function (leverage effect) and the 

relationship between the risk and conditional price volatility. Our methods look into 

these issues by an SNP estimation of the one step-ahead, bivariate, conditional density. 

The estimation itself embodies sufficient sample information without unreasonable 

presumptions (property of non-parametric approaches), and the customized 

diagnostics/information criteria keep the model parsimonious in the meanwhile. 

The optimized conditional density is a function of 31 variables, it is hard to 

describe directly about all the economic meanings of Hermite expansion coefficients 

and conditional heteroscedasticity coefficients directly. The final fit of 

GARCH-leading SNP model is the one with Lu = 3, Lg = 1, Lv = 1, Lr = 1, L p = 1, Iz = Ix 

= 1, Kx = 1 and Kz = 4 (bottom row in Panel B of Table 2). Due to the length of this 

paper, only the final fit is reported in Table 3, others can be distributed upon request. 
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It is interesting that there is some strong evidence of a V-type heteroscedasticity 

(shown in Equation (9)) within the GARCH-leading term, and it is positive (0.166) as 

shown in Table 3 (index number 32). The significance means there exists a leverage 

effect rather than a symmetric GARCH. We also document that an efficient procedure 

to test this effect should be treating the leverage as an add-on within the GARCH 

discipline, not some pre-determined asymmetric function, otherwise the leverage is 

highly likely to be washed away by high-order ARCH terms. We do not find any 

W-type heteroskedasticity. 
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Figure 3. Surface of bivariate one-step-ahead joint density. 

 

5. Results 

5.1 Contemporaneous relationship 

The empirical one-step-ahead, bivariate, conditional density at the mean can be 

written as: 

               (12) 

where rett defines the SPX daily return, %VIX t defines the daily innovation (in terms 

of percentage change) of CBOE VIX; the  and  calculate their 

unconditional means respectively. Function (12) contains an information set defined 

as of lagged returns and volatility innovations: 

. Therefore, conditioning on this particular 
information set in the function gives an in-sample one-step-ahead prediction of the 

bivariate conditional density. It embodies the sample information pertaining to the 

predictability of the price changes, the nature of the possible relationship between 

returns and volatility index, and the shape characteristics of the probability density of 

returns. Because the fitted conditional density is a generalized Hermite expansion of 

32 variables (including intercept) thanks to the GARCH-leading non-parametric 

optimization, it is difficult to describe all the parameters directly. Our strategy is 

therefore to examine features of the density by looking at marginal, low-order 

moments, and conditional moment functions and to interpret these features in view of 

the economic issues. 

Figure 3 shows the three-dimensional surface of the one-step-ahead joint density as 

shown in Function (12). It suggests the fitted density is quite smooth over the dataset. 

No hump-shaped feature exists in the density function. Figure 4 depicts the contour 

plots of it demonstrating a downward-sloping shape; the downward tendency also 

gives us the intuitive impression that there is a rough negative risk-return correlation. 

Given the joint density estimation as before, the marginal conditional density of rett 

is computed as: 
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Figure 4. Contours of bivariate joint density. 

 

Figure 5. Contemporaneous relationships. 

Since the in-sample prediction nests the unconditional means of SPX return and 

the %VIX as its information set, so it is an intuitive guess that the one-step-ahead 

prediction of SPX return might not deviate from the unconditional tendency too much. 

And, provided the joint density, it should also be easy to calculate all the conditional 

moments accordingly. 

The contemporaneous relationship between SPX return (denoted as rett) and the 

percentage change of VIX (denoted as %VIX t) is revealed by looking at the 

conditional mean and variance of rett given %VIX t (along slices of the bivariate 

(rett, %VIX t) density). Figure 5 shows the first two moments of rett conditional 

on %VIX t. These are the mean and variance of rett univariate marginal density 

obtained by slicing the bivariate density show in Figure 3 along a line through 

(−15,15) on the %VIX t axis parallel to the rett axis. The horizontal axis in Figure 5 is 

in standardized units (divided by the standard deviation) of the marginal conditional 

density of 
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%VIX t, 

 

The range of the horizontal axis in Figure 5 extends four standard deviations on 

either side (each unit corresponds to 4.56 change in values of %VIX). We focus 

particularly on curves within three standard deviation units because the moment 

functions become oscillatory outside this bound. The reason is that, for the data 

of %VIX, it is too rare for %VIX to exceed over three standard deviations change (12 

or more change in value of %VIX happens less than 2 per cent of the time). Although 

we already impose trimmings to deal with outliers, yet the practical market situation 

should not be ignored after all. We choose a relatively less conservative bound of 

three standard deviation units because our dataset is moderately large enough. A more 

conservative limit, two standard deviations, could be chosen because %VIX already 

rarely exceeds this limit (less than 8 per cent of the time). Fortunately, the degree of 

freedom in daily data is still reasonable for a bigger bound without spurious fittings 

and most importantly, we can also look into the tail behaviour. 

Generally speaking, Figure 5 depicts an intuitive and straightforward result that a 

decrease in %VIX(negative %VIX) means a positive mean return while an increase in 

VIX(positive %VIX) implies conditional losses. In addition, there are also some 

untraditional features that can be observed as follows. 

First, it is very interesting to note that the direction of the conditional daily return 

(solid line) is related to the contemporaneous innovation of the implied volatility in a 

non-linear way, and there seems to be some threshold to define this non-linearity. 

Specifically, within the range of one standard deviation change of VIX (in absolute 

value), the conditional return is negatively and monotonically related to the %VIX. 

The relationship is very close to a linear correlation and the slope is −0.11, which 

means one unit change in VIX implies a 0.11 decrease in the conditional total return. 

But this relationship, however, reverts itself and becomes positive outside the bound 

of one standard deviation unit. So a hump-shaped curve exists and shows 

non-monotonicity. Our findings might provide some explanations for the conflicting 

results put forward by early literature in which different signs of linear relations are 

found using various methodologies. The reason is that a risk-return relationship may 

not be as simple as we might think: a linear model has a tendency to smooth the 

non-linearity by simply ignoring higher-order terms; pure nonlinear parametric 

models may not be flexible enough to accommodate heterogeneities or even to distort 

the truth due to unreasonable assumptions (for example, we must assume distributions 

for the errors), and ultimately prevent the model from revealing the true DGP. Our 

SNP model is a distribution-free non-parametric model which starts from a standard 

normal distribution and then adjusts the density function by higher moments or 

leading terms determined by the dataset, while balancing over-fittings by penalties 

and customized diagnostics. Advantages as such make the SNP discipline dominate 

parametric models by allowing the real dataset to play a role, and in the mean time, 

circumvent over-fitting problems typically found in non-parametric methodologies. 
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Our result also partly agrees with Linton and Perron (2003) which shows a 

hump-shaped pattern of the risk premium, although our result turns out to be more 

smooth and less complex. It is possible that we could model short-term dynamics 

artificially well by simply expanding the conditional density function using 

higher-order Hermite polynomials. By doing so, a much complicated relationship 

might be derived and the non-monotonicity could be far more sensitive to innovations 

of the VIX. However, a complex relationship might not have much meanings for real 

trading strategies. Statistical relationships may not always apply in practice, especially 

when they are highly complicated. Traders may be more interested in summarizing a 

meaningful and aggregated relationship such that benchmarks of long/short positions 

could be made. Therefore, a simple but useful result might be preferred. In our results, 

we penalize some of the meaningless dynamics and focus more on thresholds at 

which the relationship reverts to different signs. We conclude that (empirically) the 

threshold is one standard deviation of the VIX innovation (in percentage terms). If the 

VIX innovation exceeds this bound (positive or negative), the correlation itself reverts 

to a positive one. Therefore, the contemporaneous risk-return behavior depends not 

only on the sign of risk metrics (sentiment shifts), but also on the magnitudes of the 

change. In other words, fear or exuberance (extreme innovation of VIX) does affect 

the conditional return, but the influence is non-monotonic and hump-shaped. On the 

one hand, very deep fear does not necessarily mean huge losses, instead, the loss may 

not be as bad as fears of normal levels, while on the other, exuberance does not 

correlate to big returns. 

 

Figure 6. Bivariate conditional variance. 

 

Secondly, in Figure 5, there also exists a generally bigger positive expected return 

in the negative %VIX region, whilst on the positive region, a generally smaller 

expected loss can be clearly observed. This asymmetry suggests that information 

pertaining to %VIX can actually help investors to reduce their losses and increase their 

total returns as well. More technically, when the daily %VIX enters the bivariate SNP 

system, it effectively carries information that can be used to hedge contemporaneous 

exposure to conditional loss (the so-called loss aversion), so that it mitigates the 

expected loss and more importantly, it even contains information about profiting over 
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small (but frequent) positive %VIX. 

Thirdly, it is also interesting to observe the second-order conditional moment of the 

total return (broken line in Figure 5). We find that positive %VIX correlates to a 

volatility moderation (to the right) relative to negative VIX innovations (to the left). 

The result is consistent to intuitive explanations of how traders treat different signs of 

VIX innovation. Less fear (or even exuberance) eases motives to stabilize total return 

fluctuations simply because the volatility in the upside conditional returns is only 

treated as sweeteners, but higher expected risk (measured by fear gauge) will intensify 

market turmoil and hence increase trader’s motivation to foil conditional volatility of 

returns. In other words, investors do not consider a decrease in the implied volatility 

as a true market risk. The VIX’s contemporaneous effect seems to mitigate the 

conditional variance of return only when %VIX is positive. 

 

5.2 Asymmetries of the conditional variance 

Figure 6 depicts the marginal conditional variance function of total return against 

lagged return itself (also in terms of standard deviation unit). It is clear that the 

conditional variance function displays the conditional heteroscedasticity captured by 

traditional GARCH-family applications. As before, on the horizontal axis, one unit 

stands for one standard deviation corresponding to 0.95 change in lagged SPX returns. 

 

Figure 7. Univariate conditional variance. 

It should be noticed that even though the SNP estimation does not impose any form 

of symmetry towards the marginal conditional variance function of return, the plots 

generated from which shows a symmetric feature, as shown by the quadratic fitting. 

However, the symmetry conflicts with the findings by Nelson (1989, 1991), Pagan 

and Schwert (1990), and others who find evidence of asymmetric properties in the 

conditional variance function. Literature names asymmetries of the sort the leverage 

effect after early studies by Black (1976) and Christie (1982). They both provide 

evidence that changes in the equity value of a firm affect the riskiness of the firm’s 

equity. Recent evidence, for instance, Low (2004) uses a simple linear model to prove 

the significance of this effect. But tests of the leverage hypothesis by French et al. 

(1987) and by Schwert (1989, 1990) suggest that financial leverage could not be 

responsible for asymmetries of the magnitude reported in literature. Nevertheless, the 

consensus is that leverage effect is due to the asymmetry in conditional variance of 

returns. 
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The reason why our SNP model fails to capture this asymmetry is because our SNP 

constructs a joint density function in which the SPX daily return and the implied 

volatility change are considered simultaneously. Hence, the conditioning information 

set includes both past returns and %VIX as well. When we exclude the %VIX out of 

the system and use a univariate SNP model to estimate the return series, we get a 

univariate conditional volatility plot shown in Figure 7. And by doing so, evidence of 

asymmetry is also uncovered. Therefore, Figure 7 still confirms a rather mild leverage 

effect by noticing the quadratic fitting curve is higher on the left than on the right, 

which is consistent to previous findings (negative past return causes higher 

conditional volatility). However, almost all the other articles regarding leverage effect 

examine a marginal price process instead of considering multivariate cases. This 

difference suggests that introducing VIX in to the analysis is responsible for 

producing the symmetry seen in Figure 6. 

We also note from Figure 6 that although the introduction of VIX contributes to the 

symmetry, this symmetry is not a real one in the sense that the %VIX finally makes 

the conditional variance tilting to the left which can be fit using a cubic fitting. 

 

6. Monte Carlo Simulations and Robustness Tests 

6.1 Monte Carlo description 

We use Monte Carlo simulations to do the robustness check. The upper panel in 

Figure 8 plots the real SPX return series, while bottom panels show simulations (of 

the same length) from bivariate ARCH-leading and GARCH-leading SNP models, 

respectively. 
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Figure 8. (a) Real SPX return series; (b) ARCH simulated daily returns; (c) GARCH 

simulated daily return. 

 

Simulations capture features as in the real return series, but are less volatile. This is 

due to the spline transformation for outliers. We can see the GARCH-leading model 

carries the volatility moderation between 1992 and 1996, a volatile period from 

middle 2002 to middle 2003 and around the year 2001. 

Table 4 shows the first four moments of all series. They all show excess kurtosis 

and negative skewness, which are typical to financial time series. The 

GARCH-leading model gives a much higher kurtosis which is closer to the kurtosis 

from the real series. 

However, we should also notice all kurtosis of simulated series cannot explain the 

real one fully as observed in the financial market. A fundamental explanation is 

because the BIC is still conservative even when diagnostics kick in to determine a 

richer model. Therefore some temporary and abrupt fluctuations may be erased by the 

Schwarz penalty. 

TABLE4 

First four moments 

 Real SPX daily return ARCH generator GARCH generator 

Mean 0.032 0.037 0.031 

Variance 0.995 0.808 0.781 

Skewness 

Kurtosis 

-0.101 

6.908 

-0.148 

4.986 

-0.199 

5.627 

 

Despite its aggressiveness, researchers still prefer the Schwarz criterion, because 

evidence shows it does a good job in finding abrupt drops in integrated squared error 

which is the point at which one would like to truncate in Efficient Methods of 

Moments applications (Gallant and Tauchen, 1999; Coppejans and Gallant, 2002) 

6.2 Robustness check 

In order to check the validity of the SNP model, we construct the following model: 

|RETt| = β0 + β1|RETt−1| + β2 [RETt−1 I (RETt−1 <0)] + ut          (13) 

This regression effectively passes a V-shaped line through the central cloud. The 

parameter β2 is the asymmetry coefficient: the more negative is β2, the steeper is the 

slope on the left half of the ‘V’. If the hypothesis of the legitimacy of the SNP mode 

can be accepted, then the model itself must generate similar series in terms of 

identical conditional properties. In order to ensure that findings from this regression 

are also features of the fitted (GARCH-leading) SNP model, I fit the same regressions 

to the simulations generated from the bivariate SNP data generating process (DGP) 

and from the univariate SNP DGP. The first 50 actual observations from January 1990 

to March 1990, are used as the initial conditions for both simulations, and simulations 
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are of the same length as the original data. 

Table 5 shows three regressions of SPX return allowing asymmetric leverage 

effects. All coefficients are statistically significant at the 1 per cent significance level. 

And in particular, all the simulations based on the GARCH-leading SNP models 

(bivariate and univariate models) yield to similar features as the real SPX returns by 

observing the negativity of β2(the dummy). These results support the GARCH-leading 

SNP model to be a powerful and precise estimate of the real data generating process. 

Comparing Panel B with Panel C, we find that the coefficient of the dummy from the 

univariate model is more negative than the one from the bivariate model. This is 

consistent with my previous results on the conditional variance that the introduction 

of VIX contributes to the symmetry. And when we eliminate the VIX from the system 

and estimate using the univariate SNP model the asymmetry is back and becomes 

more significant. 

 

7. Conclusion 

We use the bivariate semi-nonparametric (SNP) model developed recently by 

Gallant and Tauchen (2006) to study the contemporaneous relationship between the 

innovation of VIX and the expected SPX returns. We estimate the bivariate 

conditional joint density function using optimal Hermite expansion. The conditional 

density function is also subject to a possible leverage GARCH effect. We use the 

expectation of future market volatility as a source of risk (Chen, 2003, and Ang et al., 

2006). In our paper, this particular metrics of risk is calculated by the daily innovation 

in the implied volatility (the CBOE VIX). 

We conclude that the contemporaneous risk-return behaviour depends not only on 

the sign of the risk metrics (sentiment shifts), but also on the magnitude of the change. 

In other words, fear or exuberance (extreme innovation of VIX) does correlate to 

conditional return, but the correlation is non-monotonic and hump-shaped. On the one 

hand, very deep fear does not necessarily mean huge losses, instead, the loss may not 

be as bad as fears of normal levels, while on the other, exuberance does not 

necessarily correlate with big returns. 

Our result partly agrees with Christensen and Nielsen (2007) on negative and 

monotonic correlation but we argue that the negativity is subject to the magnitude of 

innovations of the expected volatility, and that positive relation also exists given 

dramatic changes of sentiment, so that a non-monotonic relationship seems to be a full 

story. 
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TABLE5 

Estimates of coefficients for linear models 

Note: Panel A regresses the real dataset of SPX returns whilst datasets in Panel B and 

Panel C are Monte Carlo simulations based on Bivariate SNP and Univariate SNP 

data generating processes respectively. 

 

However, our framework is not intended to be predictive or keen to show any form 

of causality, but merely to directly illustrate the conditional contemporaneous 

risk-return relation. And the relationship is also allowed to change conditional on the 

contemporaneous market condition and on how much the VIX increases or decreases. 

The paper can be thought of as an extension of Christensen et al. (2010) on the 

dimension of nesting not only the signs but also magnitudes of innovations as the 

information set. Our results partly agree with Linton and Perron (2003) but differ in 

the risk measures. We also show a hump-shaped pattern of the total returns relative to 

risk perceptions but it turns out to be more smooth. 
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Appendix I: Seasonal Effect Adjustments 

 



29 

 

 

 


	Risk Perception and Equity Returns-Evidence from the SPX and VIX封面
	Risk Perception and Equity Returns-Evidence from the SPX and VIX

