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1. Introduction

Whether asset returns are predictable has been a longstanding research question in
literature.! On option market, Harvey and Whaley (1992), Gonclaves and Guidolin
(2006), Konstantinidi, Skiadopoulos, and Tzagkaraki (2008), Chalamandaris and
Tsekrekos (2010, 2011) and Neumann and Skiadopoulos (2013) find that option
implied volatilities are statistically predictable. However, the economic profits
become insignificant once the transaction costs are accounted for. Literature
documents a disparity between statistical and economical significance of option
market predictability.?

In this paper, we solve the disparity by using implied volatility surface information.
The trading of the option market is dominated by short-maturity options. Nevertheless,
Bakshi, Cao, and Chen (1997) find that long-dated options have information not
readily available from short-dated options. Recently, Christoffersen, Jacobs,
Ornthanalai, and Wang (2008) and Christoffersen, Heston, and Jacobs (2009)
proposed component volatility models, and decomposed stochastic volatility into
long- and short-term components. They find that component volatility models
perform better than one-factor stochastic volatility model. These findings suggest
there exists useful information in the whole implied volatility surface. Bakshi et al.
(1997), Christoffersen et al. (2008, 2009) analyze the statistical significance. We
extend their analysis to investigate the economic significance of implied volatility
surface, and document significant economic gains by using the information of implied
volatility surface.

We test whether incorporating the information of implied volatility surface can
improve the prediction of implied volatility. If both long- and short-maturity implied
volatilities contain useful information, using the whole implied volatility surface
information will be able to improve the volatility forecast that is only based on one
particular maturity information. We examine 14 models and compare their
out-of-sample performance with that of the benchmark AR(1) model. These
competing models are two adapted Nelson and Siegel models used by Diebold and Li
(2006) for Treasury securities and by Chalamandaris and Tsekrekos (2011) for
currency options, six time series models similar to Diebold and Li (2006), five
combination models as in Rapach, Strauss, and Zhou (2010) and a Mallows model
averaging (MMA) combination as in Hansen (2007, 2008). We use the implied
volatility surface information of the at-the-money (ATM) options and the options with
0.40 and 0.60. We choose call option in our main analysis, and use put option as a
robustness check. We find that, historical surface information plays a significant role
in the prediction of implied volatilities. When daily data are used to forecast the
30-day implied volatility 1 day ahead and 5 days ahead, the best out-of-sample R2
value is as high as 7.39% and 7.64%, respectively.® Results are significant across

1See, for example, Fama and Schwert (1977), Fama and French (1988), Campbell and Shiller (1988), Kothari
and Shanken (1997), Rapach et al. (2010, 2013), Pettenuzzo, Timmermann, and Valkanov (2014), Rapach,
Ringgenberg, and Zhou (2016) on predicting stock returns; Keim and Stambaugh (1986), Fama and French (1989),
Greenwood and Hanson (2013), Lin et al. (2014), Lin, Wu, and Zhou (2017) on predicting corporate bond returns;
and Fama and Bliss (1987), Campbell and Shiller (1991), Cochrane and Piazzesi (2005), Goh, Jiang, Tu, and Zhou,
(2012), Sarno, Schneider and Wagner (2016), Gargano, Pettenuzzo, and Timmermann (2017), Lin, Liu, Wu, and
Zhou (2017) on predicting Treasury bond returns.

2 Similar disparity of statistical and economic significance on Treasury return predictability is documented in
Thornton and Valente (2012).

3 These results are higher than or comparable to studies on the predictability of other financial markets. See, for
example, Gargano et al. (2017) on Treasury return predictability, Lin et al. (2014) and Lin, Wu, et al. (2017) on
corporate bond return predictability, and Rapach et al. (2010), Pettenuzzo et al. (2014) and Rapach et al. (2016) on
stock return predictability.
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almost all maturities. Our results reveal the importance of using the whole implied
volatility surface information. However, these models lose their predictive power
beyond a week, suggesting that only the historical information within 1 week of the
forecast date is important for the short-term forecast of index option market.

To examine whether the predictability has economic value, we construct a trading
strategy based on a forecast by each model, and compare the portfolio performance
with that of the benchmark AR(1) model. Using the gain on Leland's alpha (Leland,
1999) as the performance measure, we find that those models that utilize information
from the entire surface generate significant economic profits up to 5 days ahead even
after transaction costs are considered. For example, when daily data are used, the
trading strategy based on the 1-day-ahead forecast by the VAR(1) model of volatility
change (VARC) generates a gain on Leland's alpha of 11.13% relative to the
benchmark, and is significant at the 1% level. The trading strategy based on the
5-day-ahead forecast by the VAR(1) model of volatility change (VARC) generates a
gain on Leland's alpha of 2.13% relative to the benchmark, and is significant at the 10%
level. Results are robust to the impact of transaction cost. This finding distinguishes
our study from most other literature that finds no predictability of the option market
after considering transaction costs.

Our findings are robust over time and over different options. A sub-sample analysis
using data during the recent 2007-2009 financial crisis period finds that the
predictability still exists during the crisis. Implied volatilities can still be predicted 5
days ahead. Moreover, their economic significance of 1-day-ahead forecast becomes
stronger during the crisis. Analysis using put option data and data with a broader
range of further confirms our main results.

In order to explain why implied volatility surface information helps improve the
forecast, we estimate a two-factor stochastic volatility option pricing model to extract
a long-term and a short-term variance factor. Regressions of option implied volatilities
on these two factors reveal that both variance factors are important to explain the time
variations of implied volatility. Long-maturity implied volatilities are more associated
with the long-term variance factor, while short-maturity implied volatilities are more
related to the short-term variance factor. Both long- and short-maturity implied
volatilities contain useful information of the implied volatility term structure. We are
able to provide a better prediction by using them jointly.

Our study contributes to the literature in several ways. Our findings shed light on
volatility modeling. We evaluate an extensive set of 14 models. Our finding that the
whole implied volatility surface provides useful information in forecasting implied
volatility suggests that a one-factor model is not sufficient for volatility modeling. In
this regard, we provide empirical evidence consistent with the emerging component
volatility models.

We document both statistical and economic significance of option market
predictability using the information of implied volatility surface. This finding is
different from literature that documents significant statistical predictability but fails to
uncover the economic significance. This finding provides new insights to the
economic profit by the predictability of implied volatility.*

Egloff, Leippold, and Wu (2010) and Johnson (2017) show that besides level, slope
also helps predict the implied variance. We differ from them by considering more
flexible models to use the information contained in the surface of implied volatilities.
As a robustness check, we also compare the 14 models with the two-factor model that

4 Galai (1977), Chiras and Manaster (1978), Poon and Pope (2000) and Hogan, Jarrow, Teo, and Warachka,
(2004) also find significant excess returns of option trading strategies even when transaction costs are considered.
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uses level and slope as the predictors. Results continue to show that a more flexible
model specification using VAR framework provides a superior forecasting power up
to 1 week.

The rest of the paper is structured as follows. Section 2 introduces our empirical
methodologies, including the 14 prediction models tested, the out-of-sample
performance evaluation criteria, and the two-factor stochastic volatility option pricing
model. Section 3 discusses the data and presents the empirical results of
out-of-sample forecast. Section 4 provides several robustness checks, including a
sub-sample analysis using data covering the recent crisis period, the out-of-sample
performance of put options, the comparison with other benchmark, predictability
using option data with a different range and gain on alpha from a different asset
pricing model. Section 5 reports the results of stochastic volatility model calibration.
Section 6 concludes the paper.

2. Empirical Methodology

In this section, we first explain the prediction models to be tested, and the statistical
and economic significance measures for evaluating prediction performance. We then
introduce the two-factor stochastic volatility option pricing model used to calibrate
the term structure of implied volatilities.

2.1 Out-of-sample forecast

We use out-of-sample forecast to test the importance of using the information of
implied volatility surface. Suppose we have implied volatility data from time 1 to time
T, and the out-of-sample forecast starts from time m. At any time t between m and T,
we use the information up to time t to estimate the coefficients, and then use the
estimated coefficients and information at time t to forecast the implied volatility h
days ahead. At time t + h, we compare the forecast implied volatility and the realized
implied volatility to calculate the out-of-sample forecast errors. This procedure is
repeated from time mto T — h.

2.1.1 Prediction models

The Nelson and Siegel (NS, 1987) model and its extension (Diebold & Li, 2006)
are widely accepted by industry for forecasting the yield curve due to their simplicity
and efficiency. The interest rate and implied volatility term structures are quite similar
in many aspects (see Christoffersen et al., 2009; Derman, Kani, & Zou, 1996). Just as
each Treasury security has a corresponding yield to maturity, each traded index option
has a corresponding implied volatility. Both the yield curve and implied volatility
term structure exhibit a high degree of time and cross-sectional variation. Since the
NS model is an empirical model, it can be borrowed directly to model the term
structure of implied volatilities. We fit the implied volatility curve with moneyness v,
o, using the NS model,

, Y s 1= expl 47 s (1= expl 47 iy
o (t)=p,+P,— 1 | —— — exp! 4 ).
/lﬂ' llﬂ' (1)
where 7 is time to maturity and parameters f1;, f3;and f3; are estimated by ordinary

least squares (OLS) with A fixed a pre-specified value of 0.0147.> The loading on
B3 is1, aconstant that does not decay to O in the limit; hence B{; may be viewed as

5 Parameter At governs the exponential decay rate; small values of At produce slow decay and can better fit the
curve for long maturities, while large values of At produce fast decay and can better fit the curve for short maturities.
Parameter At also governs where the loading on Bv3t achieves its maximum. As a result, we choose a At value that

maximizes the loading on the medium-term (122-day) factor, which gives 0.0147.
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1 —exp! Apz)

a long-term factor. The loading on B3, is s, a function that starts at 1 but decays
monotonically and quickly to 0; and hence may be viewed as a short-term factor. The

1—exp'™*

loading on B3, is # — =" \which starts at 0 and increases, and then decays to 0,
hence it may be viewed as a medium-term factor.®

Besides the NS model, we consider six time series models following Diebold and
Li (2006), five combination models as in Rapach et al. (2010) and the MMA
combination as in Hansen (2007, 2008). Table 1 lists all 14 models evaluated in this
paper. By using dummy variables for the options of different moneyness, we are able
to combine the volatility surface information that has advantage over the use of the
volatility curve information alone. We use the the implied volatility surface
information of the ATM options and the options with 0.40 and 0.60.” We define three
dummy variables ID1 % if it is an ATM option and 0 otherwise, ID2 % if the option's
0.40 and 0 otherwise, ID3 ¥4 if the option's 0.60 and 0 otherwise. We use superscript v
to denote the moneyness. For implied volatility curve, we use the information of
short-, medium- and long-maturity implied volatilities. In particular, we use 30-, 91-,
152-, 365-, and 730-day implied volatilities in the analysis. We then forecast the
implied volatility surface h days ahead with the following models:

Table 1. Prediction models

Model framework Model No. Model ID Model description
Nelson-Siegel )] NSAR Nelson-Siegel factors as univariate AR(1) processes
Nelson-Siegel 2) NSVAR Nelson-Siegel factors as multivariate VAR(1) processes
VAR 3) VARL VAR(1) on volatility levels
VAR 4 VARC VAR(1) on volatility changes
ECM (5 ECMI1 ECM(1) with one common trend
ECM (6) ECM2 ECM(1) with two common trends
PCA (7 PCA AR(1) regression on three principal components
Empirical component (8) EC VAR(1) on empirical level, slope and curvature
Combination forecast (9 MC Mean combination forecast
(10y MD Median combination forecast
(1) ™ Trimmed mean combination forecast
(12) DMSPEI1 DMSPE combination forecast with 8 = 1
(13) DMSPE2 DMSPE combination forecast with & — 0.9
(14) MMA MMA combination forecast
Benchmark AR(1) on volatility levels
This table lists the 14 prediction models tested in this paper. The last row explains the benchmark model.

(1) Nelson-Siegel factors as univariate AR(1) processes (NSAR):

~y v v 1 —exp40 ., 1 — expl~47) L
6[,1(7) =Py, 1on + P, hT T + B3, i4n — Az expl 4 ),

(2)
Where Pisin = @1,Dy + azdDy + aslDs + (byIDy + b IDy + by dDs)f; i = 1,2,3. avanas, bbby

are all scalars
(2) Nelson-Siegel factors as multivariate VAR (1) processes (NSVAR):

6 Please refer to Guo, Han, and Zhou (2014) for a more detailed discussion.

7 This choice follows Bollen and Whaley (2004), Han (2007) and Yan (2011). For example, Bollen and Whaley
(2004) and Han (2007) define ATM calls with A between 0.50 and 5/8 (approximately 0.60), and ATM puts with A
between —0.50 and —3/8 (approximately —0.40). Yan (2011) defines OTM puts with A between —0.45 and —0.20. In
the robustness check, we test the predictability using data with A between 0.30 and 0.70.
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(3)

where Puin = aiIDi + @Dy + asIDs + (biIDy + baIDy + b3ID3)B 3 = [y, By, By |T-an,a2,05 gpe

3x1 vectors, and by,b,bs are 3x3 matrices.

(3) VAR(1) on volatility levels (VARL):
ff",_‘_hal]D. + azIDy + a3lD5 + (b[fD] + byIDsy + b3]D3)0’lv, where

[ 07(30) ]
o) (91)

6"y = | 6/(152) |. a1,az,a3 are 5x 1 vectors, and by, by, by are 5 x 5 matrices.
0'(365)
Lo} (730) |

(4) VAR(1) on volatility changes (VARC): 2",44 = a1ID; + axIDs + asIDs + (b1ID; + byIDy + b3ID3)zZ's,

a;(30) — o7_,,(30)
0;(91) — 0,_,(91)
where 2, = | 06}(152) — 6}_,(152) | . a1,az,a3 are 5 x 1 vectors, and by, by, b3 are 5 X 5 matrices.
6¥(365) — o, (365)
6*(730) — 6*_,(730)

(5) ECM(1) with one common trend (ECM1): 2,1, = a1IDy + ayID; + az1D5 + (by 1Dy + byID; + b3ID5)z",, where

0;(30) — 0;_,,(30)
a;(91) — 0(30)

2 = | 6](152) — 6}(30) |. a1,a2,a3a1,a2,a3 are 5 x 1 vectors, and by, by, b3 are 5 X 5 matrices.
6!(365) — 6*(30)
6!(730) — 6*(30)

(6) ECM(1) with two common trends (ECM2): ¥,y = a1IDy + a2l Dy + a3ID3 + (b1IDy + bl Dy + b3lDs)2,,

6¥(30) — 6¥_,,(30)
a(01) — a1, o1)

where 2, = | 67(152) — 6}(30) | .a1,a2,as are 5 X 1 vectors, and by, by, b3 are 5 x 5 matrices.
6¥(365) — !(30)

6)(730) — o}(30)
(7) AR(1) regression on three principal components (PCA). We first conduct a principal component analysis on the volatility
time series data. Denote the largest three eigenvalues by A}, 4y, and 43, with associated eigenvectors ¢}, ¢4, and ¢}, and the first
three principal components x*, = [x}, x5, “x3 ]T. We first forecast x*,41 with an AR(1) model, &7, , = a1,/Dy + axlD; +
azilDy + (b Dy + biIDy + bilD3)x! X ni=1,2,3, and then generate forecasts for volatilities as
61 (7) = @1 (DX 4y + @B (0)F 4 + qa(r)leh, ay g, asg, azg, by, by, by are all scalars.

(8) VAR(1) on empirical level, slope and curvature (EC): 6}, , = a1ID + a2ID; + a3ID3 + (b11Dy + byID2 + b3I1D3)FYy,
07(365)
where F", = 0} (365) — 6)(30) . We compute the empirical level, slope and curvature of the volatility term

2 x 0}(122) — (07(365) + 07(30))
structure. The empirical level is defined as the 365-day implied volatility. The slope is the 365-day implied volatility minus the



30-day implied volatility. Finally, the curvature is two times the 122-day implied volatility minus the sum of the 365- and 30-day
implied volatilities. @, az,as are 3 x 1 vectors, and by, b, b3 are 3 x 3 matrices.

Research has shown that combination forecasts typically outperform individual forecasts both statistically and economically. For
example, Rapach et al. (2010) find that combinations deliver consistent forecast gains for equity premium predictions. Lin, Wang, and
Wu (2014) document similar findings using corporate bond return data. So besides the forecasts in model (1) to (8), we further
combine them as &7, () = Zﬁ_, wy (h,7)6y ., (T), where 6, ,(7) is the individual forecast using model k and wy, ,(h, 7) is the
weight to be placed for the model-k forecast. Depending on the choice of weight wy ,(h, 7), we provide five combination forecasts:

(9) The mean combination forecast (MC): wy,(h,7) = 1/8.

(10) The median combination forecast (MD): the median of &}, ,(7),k = 1,2,...,8.

(11) The trimmed mean combination forecast (TM): w ,(k, ) = 0 for the smallest and largest forecasts and wy ,(h,7) = 1/6
for the remaining forecasts. '

1

(¢r.(he))
1

(12) DMSPE (discount mean square prediction error) combination forecast one (DMSPE1): w“k’,(h, 7) = W
! i1 ::n )T,

. 2
where ¢ (h, 7) = E;.:f:'b" h ‘(a}’+h(r) - (};H,,(r)) . This weighting scheme gives more weight to the individual forecast

with smaller out-of-sample prediction error. ¢ is a discounting factor deciding the size of the weights given to recent
forecasts and m is the starting time of the out-of-sample forecast. We take € = 1 for no discounting to the remote
forecast.

(13) DMSPE combination forecast two (DMSPE2): Same as model (12) except that @ = (.9 to give greater weight to recent
forecasts.

Hansen (2007, 2008) proposes a forecast combination based on the MM A method. This method selects the forecast weight by
minimizing a Mallow criterion that is a penalized sum of the square residuals. Hansen shows that MMA forecasts have better
performance than other feasible forecasts.

(14) MMA combination (MMA). Let w*,(h, t) = [w‘f‘,(h,r). . .w;;,l(h,f) T be the weight vector of the individual forecast,
6" in(7) = [r}'l’”h(‘r). -&5;4(7) [T be the vector of the individual h-day ahead forecast of 7-day implied volatility with

moneyness v at time j, and G = [g(1)...g(8)]" be the vector of the predictor number used in the individual forecast. The MMA

combination forecast set w',(#,7) to minimize C;(h,7) with the conditions that all w} (h,7) are non-negative and that
- 2 -

Z:;l wi(h,T) = 1. C}(h, 7) is calculated by Cj(h,7) = ;jm (";4.1;(‘5) — 0" u(7)! w;’(h,r)) + 2w!(h,7)" Gs?, where 52 is an

estimate of the variance of residuals from the largest fitted model.

The benchmark model is an AR(1) model on volatility levels: &, ,(7) = a(z) + b(z)o}(7). It only utilizes the time
series information of an individual option series. If a model using the whole curve information significantly outperforms
the benchmark, then we can be confident about the critical role of the surface information in implied volatility
forecasting.

2.1.2 Out-of-sample forecast evaluation

In order to check the performance of the prediction models relative to the
benchmark model, we calculate the out-of-sample R2 statistics of each model for each
maturity across different moneyness, given by

%5 (0h4®) = 67,(2))
- - 2"
23 (o4(0) = 67,4(0))

R?’)S(T) =1

(4)



6"(7) and &”(7) are the forecast of implied volatility with moneyness v by model (1) to model (14) and the forecast by the
benchmark AR(1) model, respectively. A positive R%,S(r) value indicates that the prediction model outperforms the benchmark
model. For model (12) and model (13) that require hold-out period (p) to calculate the optimal weight, the forecasting errors used
to calculate the R%)S(T) values start from m + p until 7 — h. We calculate the MSPE-adjusted statistic to test the significance of
R2(7). Define

Funl®) = Zu[(@ha0) = La@)]” = Z, [ (@hia(0) = 24(0)” = (61(0) = (@) (5)

and the MSPE-adjusted statistic is obtained by regressing f,, , () on a constant. The p-value corresponding to the constant from a
one-sided test determines the significance of Rig(7). We use Hodrick (1992) to calculate the standard errors that are robust to
data overlap. To test the overall performance of the prediction models relative to the benchmark model, we also calculate the
overall out-of-sample R? statistics of each model using

i Do (n};h(f) - &;m(r))z o
EEELN (@) - 7)

os = 1

and test its significance with
f!+h = Zrzv [(U;)Ht(f) o H:ih(r))}z o Z‘rzv[(n;’{ h(T) o &yl h(T))z o 6-:"”!(1—) o O—:'{ .FI(T)Z:I

(7)
2.1.2 Economic significance
We follow Cao and Han (2013) to evaluate the trading performance of the
out-of-sample forecast and test whether the models generate abnormal profits. In
order to avoid the potential problems by using the interpolated data in the economic
significance analysis, we use S&P 500 index option transaction data to construct the
portfolio. The trading strategies are simply based on the forecast volatility.
Specifically, at date t we long (short) an option if the forecast volatility for that
maturity at date t pph is larger (smaller) than the current volatility. We delta-hedge our
option position by buying (selling) shares of S&P 500 index if we short (long) the
options. The hedge ratio is calculated using the Black-Scholes option pricing formula.
Its daily gain is calculated as

Fe
i1 = ((Ci.l S B Ci.r) - ((S.r 1 S:)An) —d A (Ci,: - AHS!)
365 (®)

C is the call option price, S is the S&P 500 index price, 7y, is the risk-free rate at date #, a is the number of calendar days
between two trading dates. The same equation for the delta-hedged put options is applied, except we replace the call option price
and delta with those of put option. We finally scale the dollar return z; ., by the absolute value of C;; — A;S; to convert to
percentage return.

In order to compute returns of constant maturity, we construct option portfolios targeting maturities of 30, 91, 152, 365, and
730 days, with portfolio weights estimated in a way similar to Constantinides, Jackwerth, and Savov (2013). We form five
portfolios made up of calls, each with targeted time to maturity of 30, 91, 152, 365, or 730 days. The weight of each option in a
portfolio is calculated using an univariate Gaussian weighting kernel in days to maturity, with bandwidths of 10 days to maturity
for the weighting kernel. We delete the options in a portfolio with weight smaller than 1% to remove outliers and normalize
portfolio weights to sum to one. Thus, on any day our trading includes 15 portfolios with maturities of 30, 91, 152, 365, and 730
days, and moneyness of ATM, A0.40 and A0.60. We rebalance the portfolio daily and repeat the trade in the out-of-sample
period. We then compound daily returns to h-day-ahead portfolio returns. We use the same approach to put options.

The gain on Leland's alpha is used to gauge the economic performance of these trading strategies. Leland’s alpha takes into
account the deviation of portfolio returns from normal distribution and is a, = E[rp} — ﬂp (E[rm — rf]] — ry, where r,, denotes

mv(rp.—(|+nx)7’)
CoV(Fm, (147m) 7)

the market return approximated by the S&P 500 index return, §, = measures the systematic risk and y =

In(E[Ltru])In(1+rs
var(In(1+r,))

Leland's alpha of the benchmark AR(1) model.® A larger-than-zero gain on Leland's

) measures the relative risk aversion. For comparison, these measures are then subtracted by the corresponding

8 By saying gains from using information over surface of implied volatilities, we are more interested in
comparing the models that use surface information with the benchmark model that does not use it. Thus all the
statistical and economic significance measure we report in the paper are the comparison results to reflect our
research focus.

9 Studies of effective spread on equity options include Mayhew (2002), De Fontnouvelle, Fisher, and Harris
(2003) and Muravyev and Pearson (2016). Mayhew (2002) and De Fontnouvelle et al. (2003) find that the ratio of
effective spread to the quoted spread is less than 50% for equity options. Muravyev and Pearson (2016) show that
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alpha thus indicates that the trading strategy generates an excess risk-adjusted return
over the benchmark model. We annualize the gain on Leland's alpha and test its
significance with Newey and West (1987) t-statistics adjusted for serial correlation.

Transaction cost is an important factor we need to control when we compare the
performance of two trading strategies. A positive gain on Leland's alpha of one
trading strategy might be due to its more aggressive trading. Thus its economic
significance disappears once the transaction cost is accounted for. In order to examine
whether our results are robust to the impact of transaction cost, we follow Cao, Han,
Tong, and Zhan (2017) and introduce the transaction cost into the trading. We first use
the mid price (MidP) that is the mid-point of bid and ask price. It does not assume any
transaction cost. We then consider the effective option spread to be 10%, 25%, and
100% of the quoted spread.®

2.2 A two-factor stochastic volatility option pricing model

In order to measure the impact of different volatility components on the implied
volatility term structure, we estimate a two-factor stochastic volatility option pricing
model, as in Christoffersen et al. (2009), where the variance of the risk-neutral
ex-dividend stock return is determined by two factors,

dS; = rSdt + 'V, Sidzy + V'V IdZZI;
dv,, = (a1 — b V“)dl‘ + o1V V1dzy,,

dVy = (ar — b2V )dt + 62/ Voudza, @)

where z1t and z2t are uncorrelated, the correlation between zIt and z3t is pl and
the correlation between z2t and z4t is p2. We define the factor that is more persistent
(b closer to zero) as the long-term variance factor, while the other is the short-term
variance factor. As shown in Christoffersen et al. (2009), European options can be
valued by a closed-form formula under this framework.

3. Data and Empirical Results

Our sample includes the implied volatilities of S&P 500 index options from 1996 to
2015. We use the volatility surfaces taken from the vy DB OptionMetrics database,
with 10 different maturities (30, 60, 91, 122, 152, 182, 273, 365, 547, and 730 days)
on each observation date. Since not all maturities are traded on each date,
OptionMetrics interpolates the surface to obtain the missing data. Table 2 reports the
mean, maximum, minimum, standard deviation, and autocorrelation of implied
volatilities of ATM call options with different maturities.’® The volatility curve is
upward sloping, and long-maturity implied volatilities have smaller standard
deviations than short-maturity implied volatilities. For example, the 730-day implied
volatility has a mean of 20.17% and a standard deviation of 4.43%, while the 30-day
implied volatility has a mean of 18.83% and a standard deviation of 7.51%. The
different persistence across maturities suggests a necessity to model the long- and
short-maturity implied volatilities separately.

Figure 1 plots the time series of the implied volatilities of ATM call options. It is

for the average trade, effective spreads that take account of trade timing are one-third smaller than the traditionally
used effective spreads.

10 The results of other moneyness are close to those of ATM options.
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clear that volatilities are time varying, with spikes occurring between 1998 and 1999,
between 2002 and 2003 and between 2008 and 2009. They reflect the impact of the
Asian crisis, the accounting scandal and the credit crisis, respectively. In the following
empirical studies, we focus on the implied volatilities of five different maturities (30,
91, 152, 365, and 730 days) to reduce the dimensions in panel data model.

Table 3 reports the trading summary of options with different maturities. We report
both the trading volume and the open interest. The option data with a negative bid-ask
spread, a negative trading volume and open interest or a negative implied volatility
are excluded. The trading volume and open interest of ATM (call and put) options,
call options with 0.60 and call options with 0.40 are calculated from the options with
moneyness between 45% and 55%, between 55% and 65% and between 35% and
45%, respectively.

Table 2. Summary statistics

Maturity (days) Mean (%) Std. dev. (%) Min. (%) Max. (%) (10) 0 (30) ¢ (60) »(180)
30 18.83 7.51 8.14 74.83 0.89 0.75 0.61 0.34
60 19.07 6.87 9.08 67.22 0.92 0.80 0.66 0.38
91 19.21 6.45 9.70 60.45 0.93 0.82 0.69 0.41
122 19.33 6.09 10.23 57.44 0.94 0.84 0.71 0.43
152 19.44 5.78 10.45 53.84 0.94 0.85 0.73 0.45
182 19.54 5.56 10.60 50.38 0.95 0.86 0.75 0.46
273 19.70 5.17 10.96 46.48 0.95 0.88 0.78 0.49
365 19.81 4.96 11.25 44.48 0.96 0.89 0.79 0.50
547 20.02 4.60 11.61 40.19 0.96 0.90 0.81 0.52
730 20.17 4.43 11.74 38.66 0.96 0.90 0.81 0.53

This table reports the summary statistics (mean, standard deviation, minimum, maximum, autocorrelation with lags of 10, 30, 60, and 180 days) of the implied volatilities of
ATM call options. The sample period is from 1996 to 2015.

Figure 1. Implied volatility of selected maturities

G o B
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FIGURE 1 Implied volatility of selected maturities. This graph plots the time series of implied volatilities of selected maturities, specifically
30, 91, 152, 365, and 730 days. Sample period is from 1996 to 2015 [Color figure can be viewed at wileyonlinelibrary.com|

Trading in the option market is dominated by short-maturity options. For example,
for the ATM call options, the options with maturities less than three months contribute
about 79.39% to the total trading volume and about 54.90% to the total open interest.
On the other hand, the options with maturities longer than 1 year only account for
2.96% of the total trading volume and 9.57% of the total open interest. The trade of
long-maturity options is much less than that of short-maturity options. It is of great
interest to investigate whether these limited trading contains useful information about
future implied volatilities.

As a comparison, we also report the trading summary of call options with  0.70
using the options with moneyness between 65% and 75%, and 0.30 using the options
with moneyness between 25% and 35%. Trading of call options with 0.70 is  less
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active than those of 0.60, and dominated by short-maturity options. Nevertheless,
trading of call options with 0.30 is more active than those of 0.40. This suggests that
these options are liquid and frequently traded by investors.!! In the robustness test,we
add the options with 0.70 and 0.30 in the analysis to test whether the forecast result is
robust to inclusion of more options.

We start the out-of-sample forecast in 2002. Parameters are estimated using a
recursive window. Implied volatilities are forecast 1, 5, and 20 days ahead. The
holdout out-of-sample period for model (12) and model (13) is set as 60 days.

We fit the implied volatility curve using the NS model by OLS on each observation
date. Unreported results show that B1t, as a long-term factor, displays a more
persistent pattern than the other two factors. On the contrary, 2t and B3t are volatile
since they represent the short and medium terms. They are especially pronounced
when the market is turbulent. f1t moves smoothly and captures the trend of the
volatility very well, verifying that it reflects a long-term volatility. B2t and VIX mimic
each other, and taken together with the close movement between B2t and the empirical
slope lines, indicate that B2t reflects the short-term volatility component and can be
interpreted as a slope factor. The time variations of these factors provide some
preliminary evidence that confirms the necessity of decomposing volatilities into
long- and short-term components. 2

Table 3. Trading summary of S&P 500 index options

Maturity Open Open

(days) Volume Percentage  interest Percentage  Volume Percentage  interest Percentage
ATM call ATM put
<30 40,826,704 29,12 193,057,678 20,17 42,851,640 30.27 180,550,841 21.07
30-91 70,480,199 50,27 332,449 354 34.73 72,196,523 51.00 326,092,925 38.06
91-152 14,868,885 10.61 123,813,077 12.93 15,524,699 10.97 122,601,772 14.31
152-365 9,870,019 7.04 216,370,952 22.60 8,436,133 5.96 169,304,814 19.76
365-730 3,257,799 232 77,318,610 8.08 2,169,028 1.53 52,129,581 6.08
=730 900,996 0.64 14,251,508 1.49 379,320 0.27 6,088,079 0
All 140,204,602 100.00 957,261,179 100.00 141,557,343 100.00 856,768,012 100.00
Call with A =0.60 Call with A =0.40
<30 23,023,845 38.11 195,034,840 24.31 34,707,239 44.34 189,011,008 22.96
30-91 25,997,656 43.03 308,898,741 38.50 29,377,294 37.53 288,242,921 35.02
91-152 4,682,105 1.75 99,185,971 12.36 5,848,476 747 113,299,573 13.76
152-365 4,439,338 135 147,334,272 18.36 6,264,739 8.00 178,055,275 21.63
365-730 1,800,099 298 45,091,625 5.62 1,778,007 L.27 48,277,885 5.86
=730 472,063 0.78 6,799,529 0.85 301,047 0.38 6,288,435 0.76
All 60,415,106 100.00 802,344,978 100.00 78,276,802 100.00 823,175,097 100.00
Call with A=0.70 Call with 4 =0.30
<30 13,014,136 55.83 201,197,166 33.64 37,280,577 46.16 203,664,354 24,08
30-91 7,809,005 33.50 244,844,064 40.94 28,084,411 34.78 285,230,619 33.72
91-152 980,076 4.20 65,617,431 10.97 5,995,761 742 119,034,913 14.07
152-365 1,081,000 4.64 70,052,792 11.71 7,302,547 9.04 188,065,864 2223
365-730 354,853 Ll 14,594,019 244 1,799,856 2723 43,772,154 517
=730 69,372 0.30 1,765,233 0.30 294,143 0.36 6,158,059 0.73
All 23,308,442 100.00 598,070,705 100.00 80,757,295 100.00 845,925,963 100.00

This table reports the trading volume and open interest of S&P 500 index options from 1996 to 2015, Option data with either a negative bid-ask spread, a negative trading volume and open
interest or a negative implicd volatility are excluded. The trading volume and open interest of ATM (call and put) options, call options with A equal t© 0,60, 0.40, 0.70, and 030 arc
calculated from the options with moneyness between 45% and 55%, between 55% and 65%, between 35% and 45%, between 65% and 75% and between 25% and 35%, respectively.

3.1 Statistical significance
Table 4 reports the out-of-sample R20S statistics for all 14 models. The top, middle
and bottom panels report the forecast results of 1, 5, and 20 days ahead, respectively.

11 Thanks for the anonymous referee to point this out.
12 In Appendix 1, we plot the time series of B1t, B2t , and B3t of the NS model.
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The results in the top panel show that most of our models beat the benchmark for a
1-day forecast. For example, 13 out of the 14 models generate a positive R?0S
statistic at the 5% significance level or above for the 30-day implied volatility, and all
combination forecasts have a greater than zero R?0OS statistic and are significant at the
1% level. Similarly, there are 10 models that outperform the benchmark model at the
5% level or above for the 730-day implied volatility.

Among all the models, model VARC, which runs a VAR(1) model on the volatility
change, and MMA combination, have the greatest R?0OS value. Model ECM1 and
model ECM2, which are ECM models with one and two common trends, respectively,
also perform well. This suggests that the historical surface information is helpful
when forecasting a particular maturity implied volatility. It is interesting to observe
that most of the R20S statistics for the models using NS factors (model NSAR and
model NSVAR) are negative, suggesting that they are not as good as the benchmark
model in the out-of-sample period. This demonstrates the difference between
in-sample fitting and out-of-sample forecast.

It is also interesting to observe that although forecast performance is improved
overall by the use of the whole implied volatility surface information, not all models
generate desirable results. Results using the principal components of the implied
volatility curve (PCA and EC) are not significant. This finding is consistent with
Kelly and Pruitt (2013, 2015) who claim that principal components may contain
common error components that are irrelevant to forecasting, hence producing poor
forecasting performance. Models PCA and EC use level information, while models
VARC, ECM1, and ECM2 use the information of volatility changes that removes the
volatility trend. Therefore, the performance difference across these models implies
that both the information set and the way of modeling the information set are
important when out-of-sample forecasts are performed on the option market.

Turning now to the performance of the 5-day-ahead forecast, the R20S are smaller
than those of 1-day-ahead forecast. There are nine models that have positive statistics
that are significant at the 5% level for all maturities. The performance worsens for
long-maturity implied volatilities. There is only one model (ECM1) that is significant
at the 5% level for the 730-day implied volatility, while there are 10 such models for
the 1-day-ahead forecast. However, models VARC, ECM1, and ECM2 continue to
perform quite well for the 5-day-ahead forecast. The combination forecasts seem to
deliver stable and significant results. Thus, in general, the implied volatility is still
predictable 5 days ahead when we use daily data.

The bottom panel of Table 6 reports the results of the R20S statistics of the
20-day-ahead forecast. It is clear that the forecasting abilities disappear and that none
of the models is able to generate a positive R20S statistic consistently across all
maturities at the 5% significance level. Models VARC, ECM1, and ECM2 that
perform well in the 1-day-ahead and 5-day-ahead forecasts fail to beat the benchmark
model in the twenty-day-ahead forecast.

In order to visually observe the performance of the models over time, we also
calculate their monthly aggregate out-of-sample forecast errors and compare them
with those of the benchmark model. Figure 2 plots the difference of the monthly
aggregate out-of-sample forecast errors between model VARC, one of the
best-performing models reported in Table 6, and the benchmark model. A negative
value means that model VARC performs better in that month. We standardize the
series to make the pattern clear. Figure 2 shows that, for the 1-day-ahead forecast of
all maturities implied volatilities and the 5-day-ahead forecast of short-maturity
implied volatilities, most of the differences are negative, suggesting that model VARC
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consistently outperforms the benchmark model during the sample period.
Table 4. R20S of implied volatility forecast

Model

(1) (2) 3) 4) (5) (6) (7)_ (8) [9)_ & & (12) 13) 14
Maturity days NSAR NSVAR VARL VARC ECM1 ECM2 PCA EC MC MD ™ DMSPE1 DMSPE2 MMA

One day ahead (%)
30 -2.26 1.10* 251 6.10* Lo~y 5.48° 1.44° 0.49* 6.07" st Lo 6.20° 6.14* 7.39*
91 =12.59 =371 236" 5.87" 4.18" 5.05* =7.15 =7.05 352t kv 3.34° 4.10° 3.74* 6.68"
152 -9.14 -1.07 2.16* 6.65* 4.05* 5.24° -8.38 -7.82 4.04* 359" st 4.46" 4.10* 7.28
365 -25.35 —4.49 2.24° 11.07* 365 5.21° -9.26 -4.69 5.44° 4.28* 467 6.06" 561* 10.92*
730 -5.96 -8.36 1.86* 15.20" 2447 4,26 -9.76 -30.14 436" 3.68" 3.79" 53 718" 14.88"
All -7.54 =139 236" 7.23* 452* 524 -3.42 -4.98 5.08" 4.36 473" 5.45" 5.40* 8.09"

Five days ahead (%)
30 -0.57 1.85° 0.84* 6.33* 472% 4.83° 2.86" 0.83° 5.57% 4.13* 492° 5.68° 6.54° 7.64°
91 -9.94 -3.56 =155 453" 21t 218" -2.89 =344 1.90* 0.73° 1.52* 2.10° 3.24° 487"
152 =1.57 =0.38 =158 427" L7 1.76" -1.54 =234 2.56" 1.54° PR 2.66" 367" 4.66"
365 -17.83 -1.87 =144 4.83 1.22* 0.91° -3.07 =276 2.60 1.28 2.10° 2.74 401° 4.82°
730 -5.10 -6.10 -0.87 6.36 1.00° 0.46° -6.56 -16.86 2.02 1.32° L.70° 228 4.43° 6.89
All -5.24 =0.41 =031 5.52* 32" 3.26" -0.03 -1.83 3.89" 263" 3 403" 5.08" 6.34"

Twenty days ahead (%)
30 -3.05 -2.18 =537 =5.13 -6.14 —-6.76 1.63 =243 =114 -1.99 -2.14 -0.92 2.06 2.60*
91 -10.36 —-4.93 -7.08 -4.53 -7.66 -8.71 -0.53 -3.65 -3.03 -4.19 -4.11 -2.81 0.52 1.04*
152 -10.81 -3.38 -755 547 =173 -9.08 0.38 -358 =295 -3.84 -3.88 -2 0.36 1.04°
365 -15.93 -2.56 -6.81 -5.75 =122 -9.23 1.22 =333 =203 -3.21 -2.88 -191 1.78 1.29
730 -6.42 =245 -4.32 -5.76 -5.64 -7.96 =0.30 -6.37 =0.14 -2.07 -1.05 =0.10 448 1.91
All -7.26 -3.06 -6.18 -541 -6.81 -7.86 0.78° =32 -1.89 -291 -2.88 -1.69 1.55° 1.84%

stics. A positive R} statistic indicates that the prediction model
ris used for the p-value calculation to account for the impact of

This table reports the R3¢ statistics of the implied volatility forecasts of the 14 prediction models. AR(1) model is used as the benchmark to calculate the R, stati
outperforms the benchmark model. The statistical significance for the Riﬂ statistic is based on the p-value of the MSPE-adjusted statistic. The Hodrick (1992) standar
overlapping residuals. * * “denote significance at the 1%, 5%, and 10% level, respectively. The sample period is from 1996 to 2015, while the out-of-sample forecast starts from 2002 and ends in 2015.

3.2 Economic significance

The statistical significance results in Table 4 suggest that these models can forecast
implied volatilities rather well up to 5 days ahead. To explore the economic
significance of this predictability, we further develop the option trading strategies as
described in section 2. Following Goncalves and Guidolin (2006), we apply several
filters to avoid microstructure-related bias. First, we exclude thinly traded options
with less than 100 contracts per day. Second, we keep only the options with a positive
bid-ask spread, a positive open interest and a positive implied volatility. Third, we
exclude noisy contracts with fewer than 6 trading days to maturity and prices lower
than $3/8. Since the Leland's alphas are subtracted from those of the benchmark, any
model with economically significant predictability returns a positive gain on Leland's
alpha.

Table 5 reports the results. The performance of models VARC, ECM1, and ECM2
continues to be among the best. The combination forecasts also provide better
economic performance than the benchmark model. The economic significance of the
1-day-ahead forecast is much stronger than that of the 5-day-ahead forecast. MidP
uses mid price and does not assume any transaction cost. For model VARC, which
performs the best, the gain on Leland's alpha for the 1-day-ahead forecast using MidP
is 11.13% and significant at the 1% level. It declines to 2.13% for the 5-day-ahead
forecast. In sharp contrast, none of the 14 models considered is economically
significant for the 20-day-ahead forecast. This is consistent with our earlier finding
that the historical implied volatility surface information is important for predicting the
implied volatility only up to 1 week ahead.

The economic significance results are robust to the impact of transaction costs.
Results change little when different levels of transaction costs are introduced. For
example, the gain on Leland's alpha of 1-day-ahead forecast using VARC only
decreases from 11.13% to 10.79% when we change the effective option spread from 0%
(using MidP) to 100% of the quoted spread. One possible reason is that both the tested
models and the benchmark model involve transaction costs. As a result the impact of
transaction costs on their performance difference is balanced out.
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Figure 2. Difference of the out-of-sample forecast errors between the VAR(1)
model on volatility change (VARC) and the benchmark model.
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FIGURE 2 Difference of the out-of-sample forecast errors between the VAR(1) model on volatility change (VARC) and the benchmark
model. This graph plots the standardized difference of monthly aggregate out-of-sample forecast errors between the best-performing model,
VAR(1) on volatility change, and the benchmark model. A negative value means a smaller out-of-sample forecast error for the VARC model
[Color figure can be viewed at wileyonlinelibrary.com]

Table 5. Economic significance of implied volatility forecast: Gain on Leland's
alpha

Model
(1) @) 3) @ ) (6) (7)_ (3)_ L & & 12) 13) (14)
NSAR NSVAR VARL VARC ECM1 ECM2 PCA EC MC MD ™ DMSPE1 DMSPE2 MMA
One day ahead
Mid price -0.23 1.25 6.37* 11.13a 9.86* 10.57* -0.01 0.64 7.80* 749* 7.85* 8.20" 8.16* 12.87*
10% effective spread -0.23 125 6.37° 11.12% 9.86° 10.57* -0.01 0.64 7.80" 7.49* 7.85% 8.20° 8.16" 12.87°
25% effective spread =023 1.25 6.38° IS 9.86" 10.57* -0.02 0.63 7.80° 7.49* 7.85° 8.20° 8.16" 12.87*
100% effective spread -0.32 1.29 6.46" 10.79* 9.89 10.62* -0.21 0.51 7.81° 7.54* 7.88" 8.21" 8.19* 12.82*
Five days ahead
Mid price -1.18 -1.00 =0.11 2.13° 1.30 1.45 -0.05 -1.13 0.58 0.01 0.32 0.63 1.42° 2.32°
10% effective spread -1.18 -1.00 =0.11 2.13° 1.30 1.46 -0.05 -113 0.58 0.01 0.32 0.63 1.42¢ 2.32°
25% effective spread -1.19 -0.99 -0.10 2.12° 1.30 1.46 -0.06 -1.13 0.59 0.02 0.32 0.63 1.42¢ 231°
100% effective spread =132 -0.89 0.06 1.85 1.38 1.55 -0.15 =116 0.67 0.14 0.42 0.71 1.51 223°
Twenty days ahead
Mid price -142 -1.33 -1.09 -1.39 -1.11 -1.47 -0.10 -1.34 -1.15 -1.23 -1.22 -1.14 -0.63 0.49
10% effective spread -1.42 -1.33 -1.09 -1.40 =111 -1.47 -0.10 -1.34 =115 -1.23 -1.22 =115 -0.63 0.49
25% effective spread -143 -132 -1.08 -1.41 -1.10 —-1.46 -0.10 -1.34 =115 -1.22 -121 -1.14 -0.63 0.49
100% effective spread -1.61 -1.19 -0.96 -1.74 -0.97 -129 =0.11 -1.24 -1.05 =111 =110 =1.06 —-0.54 0.57

This table reports the gain on Leland's alpha of each model. On date #, we long (short) an option if the forecast volatility for that maturity at date 7 4 / is larger (smaller) than the current volatility, We consider options with maturities of
30,91, 152, 365, and 730 days. Following Constantinides et al. (2013), we construct option portfolios targeting these maturities. We re-balance the portfolio daily and repeat the trade in the out-of-sample period. We delta-hedge our
option portfolio. We first use the mid price (MidP) that does not assume any transaction costs to calculate the gain on Leland's alpha. We then assume the effective option spread to be 10%, 25%, and 100% of quoted spread. * ™ denote
significance at the 1%, 5%, and 10% level, respectively. The sample period is from 1996 to 2015, while the out-of-sample forecast starts from 2002 and ends in 2015.

Figure 3 plots the standardized aggregate monthly returns of the portfolios that are
based on the forecast one day ahead. For those models that have significantly positive
gain on Leland's alpha (models VARL, VARC, ECM1, ECM2, MC, TM, DMSPEL1,
DMSPE2, and MMA), returns are relatively stable during the normal time, but
become volatile during the crisis period. Most have a large downward spike during
the crisis, suggesting that these trading strategies could be subject to downside risk.
The only exception is model VARC. It has a sudden return increase during the crisis,
hence providing a better hedge against downside risk compared with other models.
Figure 4 plots the standardized aggregate monthly returns of the portfolios that are
based on the forecast five days ahead, and the findings are similar.

Figure 3. Time series of monthly portfolio return: 1-day-ahead forecast.
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FIGURE 3 Time series of monthly portfolio return: 1-day-ahead forecast. This graph plots the monthly return of portfolios that are based on
the 1-day-ahead forecast of implied volatility by 14 different models [Color figure can be viewed at wileyonlinelibrary.com]|

4 Robustness Checks

4.1 Out-of-sample forecast during the recent financial crisis

Our data covers the recent financial crisis period. One question is whether the crisis
has any impact on the implied volatility predictability. We examine the performance
of out-of-sample forecast between December 2007 and June 2009, the recession
period indicated by the National Bureau of Economic Research (NBER). Table 6
presents the results of the statistical and economic significance during this period.

Panel A reports the R%os statistics. In general, the results of 1-day-ahead forecasts
during the financial crisis are close to those for the full sample period. Overall, there are
nine models that outperform the benchmark model at the 5% significance level in
predicting the implied volatility 1 day ahead. However, the results of 5-day-ahead and
20-day-ahead forecasts are weaker compared with the full sample period. Only two
models are significant for the 5-day-ahead forecast, and none of the 20-day-ahead
forecasts is significant. This result is different from the finding of stronger
predictability during the recession period on stock market (Rapach et al., 2010) and
corporate bond market (Lin et al., 2014). Rapach et al. (2010) and Lin et al. (2014)
focus on risk premium forecast. They use macroeconomic variables and aggregate
market variables to forecast the return at monthly or longer horizons, and impose the
non-negative restriction to the forecast. Risk premium tends to be more predictable
during crisis period. On the other hand, we are interested in how fast implied volatility
reflects new information and focus on short horizon predictability using historical
implied volatility surface information. We are testing a different question and the
results are not comparable. One possible reason is that during a crisis period, investors
are more sensitive to information available in the markets. As a result, it takes less
time for the option market to absorb new information.

Panel B of Table 6 reports the economic significance results. Different from the
statistical result, the economic significance of predictability actually strengthens. For
example, the option trading strategy using 1-day-ahead forecasts based on model
VARC generates a 33.90% gain on Leland's alpha. The gain on Leland's alpha slightly
decreases to 31.18% when 100% effective option spread is used. They are much
higher than those reported in Table 5. This shows that historical information is more
economically important during a crisis period, which is consistent with Loh and Stulz
(2014) who find that analysts tend to make poor forecasts during the crisis, but that
the forecasts become more influential once the forecasts are adjusted.
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Figure 4. Time series of monthly portfolio return: 5-day-ahead forecast.
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FIGURE 4 Time series of monthly portfolio return: 5-day-ahead forecast. This graph plots the monthly return of portfolios that are based on
the five-day-ahead forecast of implied volatility by 14 different models [Color figure can be viewed at wileyonlinelibrary.com]

Table 6. Predictability of implied volatility during the financial crisis

Model
[ ) )] @ (5) (6) (] (8) ® 10 (11) 12 13 (14)
Maturity days NSAR  NSVAR VARL VARC ECM1 ECM2 PCA EC MC MD ™ DMSPEL  DMSPE2 MMA
Panel A. R%;
One day ahead (%)
30 =271 =092 =1.50 7.66" 37° 422 0.07 =0.33 423" 2.96 359" 4.36 430 6.28*
91 =748 =115 -0.05 7.87 3t 5.15 -1.81 =3.07 4.08" 337 365" 436 396" 731*
152 -10.87 —4.46 =046 7.83" 374 5.25 =5.76 =7.30 2,73 1.46° 225 310 2.82° 7.54*
365 -3633 -9.01 -0.78 9.36" 293" 4.45" -7.04 -4.62 4.11* 1.98° 340" 470 442* 9.75*
730 =7.46 -11.08 =314 11.37" =336 =244 -14.30 -53.58 1.84" -0.57 1.00* 217 397* 12.94*
All -6.90 =221 -1.05 7.94% 345" 4.36" -1.97 -3.81 3.92* 2.69" 334* 417" 4.03* 7.09*
Five days ahead (%)
30 -0.54 -1.26 -1048  6.08" =3.37 -1.63 0.98 =310 0.97 -146 =021 1.06 192 4.56
91 -8.12 -6.19 -10.81 3.90° =319 =211 -0.98 -6.53 =117 -4.12 -2.05 -111 -0.12 299
152 =122 -4.28 -1102 439" —4.24 =2.59 0.51 =6.11 =035  -3.10 =137 =034 0.90 3.54
365 -2344 -787 -1264  3.64° =632 —-6.62 -0.51 -7.49 -1.34 -5.86 -2.97 -1.39 0.37 1.71
730 -6.20 -9.37 -1076 2,04 -5.85 —-8.26 =516 -2468 -087 -531 =2.53 -0.85 27%° 2.55
All -4.67 =3.41 =10.77 5.09* -3.83 =237 0.18 =5.24 0.11 -2.66 =102 0.18 1.26° 3.84%
Twenty days ahead (%)
30 =206 -6.05 -19.86 -15.71 -17.21 -18.72 =171 =7.70 -8.99 -9.42 -9.94 -8.76 -6.90 -5.58
91 -6.33 =7.46 -18.34 =932 =17.30 —18.98 =0.08 =753 -8.48 =10.44 =10.14 -8.31 -6.50 -4.04
152 =714 -6.32 -18.58 -8.47 -18.35 =20.47 1.92 -7.59 -8.26 -10.50 =10.15 -8.07 -6.10 =2.64
365 -1542  -6.35 -17.10 -4.07 -19.80 -2241 550 =779 =730  -9.92 -9.38 -17.16 —4.45 0.58
730 -5.74 -0.59 -7.98 -2.38 1303 -1476  1093" -231 0.16 -3.99 —-2.40 0.21 4.37 7.57°
All -4.98 —-6.21 -1858 -11.67 -1741 -19.14 031 =741 -824  -9.62 -9.65 -8.04 —-6.01 =375
(Continues)
Model
(&) ) 3) “@ 5) 6) @ ®) ®) (10) (11 (12) (13 (14
Maturity days NSAR NSVAR VARL VARC ECMI ECM2 PCA EC MmC MD ™ DMSPE1 ~ DMSPE2  MMA
Panel B. Economic significance: Gain on Leland's alpha
One day ahead
MidP 7.33 2.10 448 3390° 1952 2487° 721 4.18 19.71° 1557 19.23°  21.44" 19.88" 28.84"
10% effective spread ~ 7.32° 2.09° 4.45° 3387° 1949 2484" 719" 4.16" 19.69°  15.55°  19.21°  21.42° 19.86° 28381
25% effective spread 720" 201° 431° 33.73° 19.35*  2470° 707" 4.04" 19.59°  15.44° 19.11° 21.32° 19.76" 28 68"
100% effective spread  6.77° 0.57° 1.74° 3118  1678° 2224  502° 1.94° 1790°  13.56°  17.32°  19.51° 18.00° 26.25°
Five days ahead
MidP L19 —4.36 -6.11 =192 123 2.76 4.57 -4.52 1.82 =314 -0.50 133 4,03 0.26
10% effective spread 118 -4.37 —6.12 -1.95 1.21 275 4.56 -4.53 1.81 -3.15 -0.52 131 4.01 0.24
25% effective spread 117 -4.42 =6.21 =2.07 L11 2,65 448 =4.61 175 =322 -0.59 125 3.95 0.13
100% effective spread 0.87 -5.33 =173 —4.23 =0.66 0.98 3.03 -6.05 0.59 -4.39 -1.84 0.06 278 -1.83
Twenty days ahead
MidP 1.32 -0.29 —4.28 —6.49 -2.34 -3.74 1.83 =271 -0.05 -1.03 -0.95 0.00 0.95 1.92
10% effective spread 132 =030 -4.29 -6.51 =235 =375 1.82 =272 =0.05 -1.04 =095 =0.01 0.94 191
25% effective spread 1.29 -0.45 —4.51 -7.01 -2.55 -3.93 1.61 -2.92 -0.20 -1.20 -112 -0.16 0.79 1.67
100% effective spread 117 =0.91 =520 -8.56 =3.19 -4.51 0.94 =3.56 =0.67 =172 -1.63 -0.63 0.32 0.89
‘This table reports th dictability of implied volatility during the financial crisis period. Panel A reports the Rf,! statistics, while Panel B reports the economic significance results. AR(1) model is used as the benchmark to caleulate the
R':,, statistics. A positive R’m statistic indicates that the prediction model outp the model. The statistical significance for the R;, statistic is based on the p-value of the MSPE-adjusted statistic. The Hodrick (1992)

standard error is used for the p-value calculation to account for the impact of overlapping residuals. Panel B reports the gain on Leland's alpha of each model during the recent financial erisis. On date 7, we long (short) an option if the
forecast volatility for that maturity at date 1 + h is larger (smaller) than the current volatility. We consider options with maturities of 30, 91, 152, 365, and 730 days. Following Constantinides et al. (2013), we construct option portfolios
targeting these maturities. We rebalance the portfolio dail, peat the trade in the out-of-sample period, We delta-hedge our option portfolio, We first use the mid price (MidP) that does not assume any transaction costs to calculate
the gain on Leland's alpha. We then assume the effective option spread ta be 10%, 25%, and 100% of quoted spread. * ™ © denote significance at the 1%, 5% and 10% level, respectively. The financial crisis period is between
December 2007 and June 2009.
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4.2 Out-of-sample forecast of put option

Another question is whether the findings using call options could be extended to
put options. To answer this question, we run our tests using implied volatility surface
of put options. We use the ATM put options and the put options with = 0.40 and =
0.60.

The top panel of Table 7 reports the R20S statistics and the following panels report
the gain on Leland's alpha of different horizons. For simplicity, we only present the
results of all maturity and moneyness. The implied volatilities of put options are
statistically predictable up to 20 days. Such predictability is stronger than that of call
options. Model VARC, ECM1, ECM2, and combination forecasts continue to perform
well.

Table 7. Out-of-sample forecast of implied volatilities of put options

Model
&) @ [©) @ @) ® o ® ©® ap an 12 (13 a4
NSAR NSVAR VARL VARC ECM1 ECM2 PCA EC MC MD TM DMSPE1 DMSPE2 MMA
One day ahead =770 =197 112t 332 2.71° 272" -651 -745 229" 217" 23} 254 267 377
R Five days ahead -626 -0.58 -0.12 466" 283" 274" 063 =226 292° 204° 239" 307" 4.10° 5.38°
Twenty days ahead -538  -3.46 -557 =371 =579 -644 079 =377 -112 =236 =220 -103 242° 2.56°
One day ahead
MidP 1.00 241 9.83* 1205 1027°  9.65*  320° 278 613" 748 639" 631° 6.65° 197"
Gain on 10% effective spread  1.00 241 9.83 1205 1027*  9.65*  320° 278° 613" 748 639" 631° 6,65 197"
Leland's alpha ~ 25% effective spread 101 2.40 9.85* 1207 1027 9.64* 3200 277 613" 748 639" 631° 6,65 11.98"
100% effective spread  —032  1.29 6.46 1079  9.89° 1062 -021 051 781° 754 7.88*  821° 819 12.82
Five days ahead
MidP 0.23 0.57 3.00* 5.16* 3.84° 3.76* 1.89° 149 215 185 219 223 3110 5.23°
Gain on 10% effective spread ~ 0.23 0.57 3.00 5.16° 3.84° 3.76" 1.89° 148 215 185" 219° 223 3.10° 523"
Leland's alpha  25% effective spread 1.01 2.40 9.85* 1207* 1027° 9.64* 320° 277 613 748  639° 631° 6.65* 11.98%
100% effective spread  —132  —-0.89 0.06 1.85 1.38 1.55 -0.15 =116 067 014 042 071 1.51¢ 223°
Twenty days ahead
MidP -1.00 0.8 0.90 0.51 0.61 -020 067 028 021 016 004 019 0.70 0.73
Gain on 10% effective spread ~ —0.99  0.07 0.90 0.51 0.61 -020 067 028 -021 016 004  -0.19 0.69 0.72
Leland's alpha  25% effective spread -0.97 0.06 0.90 0.52 0.60 -0.21 0.66 0.26 -022 0.5 0.03 -0.21 0.68 0.71
100% effective spread  —1.61  —1.19 -096 -174 -097 -129 011 -124 -105 -1L11 -110 -106 -0.54 0.57

‘This table reports the out-of-sample forecast of implied volatilities of put options by the 14 models. The top panel report the results of Ry, while the following panels reports the results of the gain on Leland's alpha at different horizon:
For simplicity, we only report the results of all maturity and moneyness, *® © denote significance at the 1%, 5%, and 10% level, respectively. The sample period is from 1996 to 2015, while the out-of-sample forecast starts from 2002 an
ends in 2015.

The predictability of implied volatilities of put options is also of economic
significance. For the one-day-ahead forecast, model VARC generates a gain on
Leland's alpha of 12.05% if MidP is used, and 10.79% if 100% effective option spread
is used. Both of them are significant at the 1% level. The economic significance of
5-day-ahead forecast is still strong. Model VARC generates a gain on Leland's alpha
0f5.16% if MidP is used, and 1.85% if 100% effective option spread is used. They are
stronger than those of call options. Overall, the results using put option data
strengthen our findings that implied volatility surface contains useful information for
the forecast of implied volatilities.

4.3 Out-of-sample forecast with other benchmark

Recently, Egloff et al. (2010) and Johnson (2017) show that slope is an important
predictor of implied variance. As a robustness check, we replace the benchmark
model of AR(1) with the two-factor model that uses level and slope, and re-run all the
tests. Unreported results show that the earlier well-performing models, such as VARC,
ECM1, ECM2, and combination forecast, have significantly positive R20S up to 1
week.® The overall R20S of VARC model is 12.47% for the 1-day ahead forecast,
and is significant at the 1% level. The results of ECM1, ECM2 and combination
forecast are similar and also significant at the 1% level. These models lose predictive
power after 1 week.

13 The results are available upon request.
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Results of economic significance analysis also suggest that VARC, ECM1, ECM2,
and combination forecast outperform the two-factor benchmark model. The gain on
Leland's alpha of the 1-day ahead forecast using VARC is 6.11% and significant at the
1% level. Results continue to be significant for the five-day-ahead forecast, and
become insignificant after 1 week.

Our empirical analysis suggests that for the short-horizon implied volatility forecast,
a flexible model framework such as VARC and others is able to use the surface
information more efficiently, and provides a better out-of-sample result. On the other
hand, when the forecast horizon is beyond 1 week, more flexible models generate
more noise, and simple models such as AR and two-factor model start to function
better. This finding has useful implication for the portfolio management.

4.4 Option data with a different range

We use options with between 0.40 and 0.60 in our empirical analysis. Literature
shows that the most liquid options are ATM as well as +0.25 and —0.25 options, which
also contain valuable information.** To test whether our results are robust to the use
of data with a different , we re-run our analysis using the option data with between
0.30 and 0.70, which covers the moneyness between 25% and 75%.

Table 8 reports the results. Panel A and Panel B report the result of call and put
options, respectively. We report the overall R20S and the gain on Leland's alpha for
the forecast of 1 day ahead, 5 days ahead, and 20 days ahead. Results clearly show
that implied volatility is still predictable when the data with between 0.30 and 0.70 are
used.The results are close to those using the data with between 0.40 and 0.60. For the
1-day-ahead forecast of call options, there are ten models with significant R20S and
gain on Leland's alpha. For the 5-day-ahead forecast of call option, there are nine
models with significant R20S and three models with significant gain on Leland's
alpha. Results become insignificant for the 20-day-ahead forecast. The results of put
option in Panel B show a similar pattern.

Table 8. Predictability of implied volatility with between 0.30 and 0.70

Model
1) ) 3) @) (5) (6) ™) 8) ® o ay a2 (13) (14)
NSAR NSVAR VARL VARC ECM1 ECM2 PCA EC MC MD ™ DMSPE1 DMSPE2 MMA
Panel A. Call options
One day ahead -8.00 -0.78 792* 10.32*  8.88* 9.22* =537 -1120 9.75* 10.09*  9.98* 10.50* 10.72* 13.34*
R Five days ahead -5.59 -0.46 2.54 7.20° 5.16° 5.19* -0.40 -4.04 6.18°  5.73% 5.89°  6.43" 797" 8.68"
Twenty days ahead -1.74 =329 =5.73 —6.35 -6.07 —6.40 0.74 =339 =077 =194 ~-158 -—0.55 319 245°
One day ahead
Mid price 0.08 1.20 10.79* 10.92*  12.80* 1292°  -015 146 825" 9.23* 899* 933" 9.50* 14.27*
Gain on 10% effective spread 0.08 1.20 10.79* 10.92* 12.80° 1292 -0.15 146 825" 9.23" 899 933" 9.50* 14.27°
Leland's alpha  25% effective spread 0.05 1.20 10.77* 10.84*  1277° 1291* -021 140 822" 921° 896  9.30° 9.47* 14.26°
100% effective spread ~ —0.03 119 10.72* 10.57* 12.70° 1285 -039 122 8.13*  9.15" 889"  9.22° 9.40° 14.25°
Five days ahead
Mid price -0.87 -1.02 0.54 271° 141 1.52 0.16 -0.74 0.57 0.56 0.48 0.59 1.66° 2.94°
Gain on 10% effective spread -0.87 -1.02 0.54 271° 141 1.52 0.16 -0.74 0.57 0.56 0.48 0.59 1.66° 2.94°
Leland's alpha  25% effective spread -0.88 -1.02 0.54 2.70° 1.41 1.52 0.15 -0.75 0.57 0.56 0.48 0.59 1.66° 2.93°
100% effective spread  —1.02 -0.96 0.57 243° 1.42 1.52 0.00 -0.90 0.54 0.57 0.47 0.56 1.64° 2.88°
Twenty days ahead
Mid price -1.17 -1.30 -0.71 -1.26 -1.03 -1.12 -021 -1.55 =105 -111 -lLI12 -1.07 -0.20 0.17
Gain on 10% effective spread -1.17 -1.30 -0.71 -127 -1.03 -1.12 -021 -1.55 -105 -L11 -112 =107 -0.20 0.17
Leland's alpha  25% effective spread -1.18 =129 -0.70 =129 -1.02 =112 -021 -1.55 =105 =110 1120 1,07 -0.20 0.17
100% effective spread  —1.37 -1.18 -0.65 -1.61 -0.93 -1.01 -030 -1.60 -098 -105 -1.04 -101 -0.16 0.22

(Continues)

14 See for example, Carr and Wu (2007).
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Table 8(continue). Predictability of implied volatility with between 0.30 and
0.70

Model

U] 2) 3 “@ ) (6) ] 8) ® (10) an (12) a3 (14)
NSAR NSVAR VARL VARC ECM1 ECM2 PCA EC MC MD ™ DMSPE1 DMSPE2 MMA

Panel B. Put options

One day ahead -13.75 =285 457" 547" 496" 560° -841 -11.83 491° 572* 550" 543° 5.30° 6.19*
Ry Five days ahead -1258 -378 1.84*  574° 275 268  -138 -613 295 235% 264" 330° 5.00° 6.82°
Twenty days ahead -7.82 -822 -1400 =281  -1497 -1606 004 -882 -549 -8.02 -730 =527 -123 0.69°
One day ahead
Mid price 022 1.82 9.63" 1141 9.10° 8.89° 201 282 595°  777% 618 579° 6.40° 11.39*
Gain on 10% effective spread 023 1.82 9.63* 1141* 910 889"  291° 2.82° 595 777* 618 579° 6.40° 11.39*
Leland's alpha  25% effective spread  0.24 1.82 9.66° 1143 9.11° 8.89° 291° 282 596 778 619" 580° 6.41° 11.39*
100% effective spread  0.49 1.77 10.19* 1175 934 902* 296" 284  602° 795* 633 592° 6.51° 11.45°
Five days ahead
Mid price 0.05 0.14 2.16° 416*  229°  221° 250 2.09° 1.50°  192° 164 163 297° 4.81*
Gain on 10% effective spread  0.05 0.14 2.16° 416 229°  221° 250 2,09 150°  192° 164 163 297* 4.81°
Leland's alpha  25% effective spread  0.07 0.12 2.18° 418 230° 220 250  2.08° 151° 192 164 163 297" 4.81°
100% effective spread 037 -0.11 247° 4.51* 2.37° 227 250 2.01° 153 194" 168 167 3.00¢ 4.87°
Twenty days ahead
Mid price -062 004 0.49 127 0.18 -002 062 021 018 002 014 016 1.68* 1.97*
Gain on 10% effective spread ~ —0.62  —0.04 0.50 1.28 0.18 -002 062 021 018 002 014 016 1.68* 1.97*
Leland's alpha  25% effective spread ~ —0.60  —0.05 0.52 1.29 0.19 -0.01 061 0.20 018 003 014 015 1.67° 1.97*
100% effective spread  —023  —0.30 0.84 1.62 0.35 0.09 054 010 018 004 012 0.5 163 2.04*

‘This table reports the predictability of the implied volatility with A between 0,30 and 0.70. Panel A and B report the result of call and put options respectively. AR(1) modelis used as the benchmark to calculate the R statistics and gain
on Leland's alpha. A positive R statistic indicates that the prediction model outperforms the benchmark model. The statistical significance for the R statistic ls based on the p-value of the MSPE-adjusted statistic. The Hodrick (1992)
standard error is used for the p-value calculation to account for the impact of overlapping residuals. Gain on Leland's alpha is used to measure the economic significance. On date r, we long (short) an option if the forecast volatility for
that maturity at date ¢ + h is larger (smaller) than the current volatility. We consider options with matwrities of 30, 91, 152, 365, and 730 days. Following Constantinides et al. (2013), we construct option portfolios targeting these
maturities. We rebalance the portfclio daily and repeat the trade in the out-of-sample period. We delta-hedge our option portfolio, We first use the mid price (MidP) that does not assume any transaction costs to calculate the gain on
Leland's alpha. We then assume the effective option spread to be 10%, 25%, and 100% of quoted spread. * * “denote significance at the 1%, 5%, and 10% level, respectively.

4.5 Gain on alpha from a different asset pricing model

We use the gain on Leland's alpha as the economic significance measure. Leland's
alpha only considers the impact of market risk on the option portfolio return. In order to
test whether the economic significance is robust to the choice of asset pricing model,
we run the regression of Chen, Roll, and Ross (1986) five factor model on long-short
option portfolio return to get the gain on alpha. We construct long-short option
portfolios following the option trading strategies as described in section 2 for each
model. We calculate the monthly cumulative option portfolio return of each predictive
model, and then the difference of the option portfolio return between the predictive
model and the benchmark model. We then run the time series regression of the option
portfolio return difference on the five factors of Chen et al. (1986),

where rit is the option portfolio return of predictive model i in month t, rOt is the
option portfolio return of the benchmark model in month t, MPt, DEIt, Ult, UPRt, and
UTSt are industrial production growth, changes in expected inflation, unexpected
inflation, risk premium, and term structure factor in month t, respectively.'®> We are
interested in whether the intercept, Alpha, is significant after controlling for the five
factors.

Table 9 reports the results of 1-day-ahead forecast. We report the results of call and
put options with between 0.40 and 0.60 (upper panel) and between 0.30 and 0.70
(bottom panel). Results strongly show that implied volatility predictability is
economically significant after controlling for the five factors of Chen et al. (1986). For
the call option with between 0.40 and 0.60, there are 10 models with significant gains
on alpha if mid-price is used to calculate the option return. Results change little if 200%
effective spread is used.

15 MP: , DEl and Ul are obtained from Federal Reserve Bank of St Louis, while UPR: and UTS: are
downloaded from Amit Goyal's website.
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Table 9. Gain on alpha of option portfolio return using Chen et al. (1986) five
factor model

Model

[ ) 3 @ 5) (6) [ (8) 9) (10) an (12) (13) (14)

NSAR NSVAR VARL VARC ECM1 ECM2 ©PCA EC MC MD ™ DMSPE1  DMSPE2  MMA
Options with 4 between 0.40 and 0.60

Mid price 0.29 1.01 6.31° 13.28*  1078" 1224 153 203 7.33* 708 7.5 7.84° 7.5 14.74°
10% effective spread 029 1.01 6.31° 13.28° 1078 1223 152 202 733 707" 753 Ro4 7.94* 14,93
Call  25% effective spread 0.29 0.99 6.29* 1325 1076" 1222 149 200  731* 706" 7.51°  831° 8.21* 15.20°
100% effective spread  0.17 0.80 6.01° 1267 1041 1194 102 155 707 683 7.27° 951 9.43* 16.29°
Mid price 213 427 1433 1474 1313 1217° 579" 508" 861" 10.22°  8.65° 887" 9.19* 15.13*
10% effective spread 214 427 1434% 1474 1304 1207° 579° 509" 862 1022 8.65°  9.08° 9.40* 1535
Put  25% effective spread 214 427 1438°  1478"  13.06*  12.19° 580 510  8.62°  1023*  8.67° 942" 9.73* 15.70*
100% effective spread 224 423 15.14* 1541 1360 1249 599° 533 880" 1046  8.89*  11.21° 11.50* 17.76*
Options with 4 between 0.30 and 0.70
Mid price 0.64 0.83 1215 13.58°  1486*  1477° 087 367°  921*  912* 951 1005 9.94* 16,00
10% effective spread 0.64 0.82 1204 1357 1486 1477° 087 3665 921 912* 951 1023 10,13 1619
Call  25% effective spread 0.63 0.81 1212° 1354 1483 1474° 084 363° 919" 9.09 949" 1050 10.39* 16.46
100% effective spread ~ 0.47 0.58 11,66 12.91* 1432 1430 033 3.03 8.80"  8.70a 9.09* 1157 11.44* 17.55°
Mid price 124 385° 1425° 1532 1328 12.55° 499" 574 873 1119 9.09° 871" 9.36" 1457
10% effective spread 1.24 385° 14.26% 15.33* 13.28 1255 499 575 873 1119 9.09* 893 9.58* 14.78*
Put  25% effective spread 1.25 3.85° 1432 1537 13.32° 1258 500 576" R74% 1121 9a1t 9.27° 9.91* 15.12°
100% cffective spread  1.48 391° 15300 1600  1400° 1308 525 609" 899"  11.64° 946"  11.19* 11.82° 17.10°

This table reports the gain on alpha of long-short option pontfolio return based on the five factor model of Chen et al. (1986). We construct long-short option portfolios following the option trading strategies as described in section 2 for
each model. We calculate the monthly cumulative option portfolio return of each predictive model, and then the difference of the option portfolio return between the predictive model and the benchmark model. We then run the time
series regression of the option portfolio retumn difference on the five factors of Chen et al. (1986)

= Alpha + fysMP; + frg DEL + BiyUl, + B33 UPR, + 15 UTS, + &, where ry is the option portfolio return of predictive model { in month £, ry, is the option portfolio return of the benchmark model in month 1, MP,, DEI,
UL, UPR,, and UTS, are industrial production growth, changes in expecied inflation, unexpected inflation, risk premium and term structare factor in month f respectively. We consider options with maturities of 30,91, 152, 365, and 73C
days. Following Ci d al. (2013), we truct option portfolios targeting these maturities, We rebalance the portfolio daily and repeat the trade in the out-of-sample period. We delta-hedge our option portfolio. We first use
the mid price (MidP) that does not assume any transaction costs 10 calculate the option return, We then assume the effective option spread to be 10%, 25%, and 100% of quoted spread, * ™ “denote significance at the 1%, 5%, and 10%
level, respectively

Results of put option are stronger than those of call option. Using data with between
0.30 and 0.70 generates a similar pattern. These results suggest that there exist
significant economic gains of implied volatility predictability form using the
information of historical implied volatility surface.

5 Stochastic Volatility Model

Our finding that implied volatility surface contains information for the prediction of
implied volatilities is consistent with the literature of multi-factor stochastic volatility
model. To test this hypothesis, we calibrate the two-factor stochastic volatility option
pricing model (9) to the implied volatility data. Following Christoffersen et al. (2009)
we calibrate the option pricing formula to the weekly data of ATM calls and puts. 6

Figure 5 plots the time series of the two variance factors for the calls (the upper panel)
and puts (the bottom panel). The variance factors fluctuate a lot over time, and reach a
peak during the crisis period. The first factor is much more persistent than the second
factor. Indeed, the mean [ values of calls (puts) are 0.21 (0.13) and 3.21 (1.70) for the
first factor and the second factor, respectively. We therefore call the first factor the
long-term variance factor while the second factor is the short-term variance factor.

We then run the univariate regressions

(v) = a(z) + By (7) Vi + (), (11)

o7 (1) = a(t) + Bo (1) Vs + &,(v), (12)

and the bivariate regression

07 (7) = a(7) + B, (t)Vie + B (1) Var + &(7), 13)

to investigate the relationship between these two extracted variance factors and the

16 Appendix 2 reports the calibration results in each year for calls and puts respectively.
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implied volatilities. V1t and V2t are the two variance factors in Eq. (9), while td t b is
the residual of the regression for the T-day implied variance.

Figure 5. Extracted variance factors
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FIGURE 5 Extracted variance factors. This graph plots the time series of two extracted variance factors calibrated from the two-factor

stochastic volatility option pricing model. The top panel plots the time series of two extracted variance factors for ATM calls, while the bottom

panel plots the time series for ATM puts [Color figure can be viewed at wileyonlinelibrary.com]
Table 10 reports the regression results of the ATM calls and puts. Most implied
volatilities are affected by both factors with significant t statistics. Short-maturity
implied volatilities are more related to the short-term variance factor, while
long-maturity implied volatilities are more related to the long-term variance factor. For
example, the long-term variance factor only explains 6% of the variances of the 30-day
call's implied volatility, but its explanatory power for the 730-day call's implied
volatility increases to 43%. Meanwhile, the adjusted R2 of the short-term variance
factor on 30- and 730-day calls' implied volatilities are 72% and 30%, respectively.
Results of ATM puts are similar. Consistent with our hypothesis, long-maturity implied
volatilities contain more information about the long-run equilibrium of variance, while
short-maturity implied volatility contains more information about short-term variance.

Table 10. Relationship between implied volatility and the extracted long-term

Maturity (days)
30

91

182

365

730

and short-term variance factors

ATM call ATM put
Long-term Short-term Long-term Short-term
factor factor factor factor
by t-stats Bs t-stats Adj. R? B t-stats B, t-stats Adj. R?
0.25 4.09 0.06 0.09 1.26 0.01
0.54 13.31 0.72 0.67 28,12 0.83
0.23 792 0.53 14.83 0.78 0.24 14.40 0.71 32.55 0.92
0.28 597 0.13 0.16 2.82 0.06
0.39 14.45 0.62 049 17.11 0.70
0.27 10.36 0.39 15.93 0.74 0.27 15.61 0.54 22.05 0.88
0.30 8,34 0.23 0.19 4,25 0.12
0.29 12.60 0.51 0.36 12.17 0.57
0.29 13.33 0.29 13.19 0.72 0.28 17.22 0.41 16.05 0.83
031 10.63 0.33 0.19 5.16 0.17
0.22 10.80 0.40 0.29 9.85 047
0.31 15.90 0.22 10.81 0.72 0.26 17.36 0.33 13.09 0.78
0.31 13.19 0.43 0.17 5.81 0.19
0.17 9.71 0.30 0.22 8.78 0.40
031 18.31 0.16 8.98 0.72 0.23 16,75 0.26 11.74 0.73

This table reports the results of regressing the squared implied volatilities of different maturities on the extracted long- and short-variance factors, We calibrate a two-factor

stochastic volatility option pricing model to the weekly data of ATM options each year from 1996 to 2015, using an iterative two-step optimization procedure as in
Christoffersen, Heston and Jacobs (2009). The z-statistics are adjusted by Newey-West standard errors.

Another interesting finding is that the explanatory power of the two variance factors
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is higher for short-maturity implied volatilities. For example, the adjusted R2 of the
30-day call's implied volatility on the two variance factors is 78%, while it is only 72%
for the 730-day call's implied volatility. We have similar results for ATM puts. These
suggest that the two-factor stochastic volatility model better captures the prices of
short-maturity options than long-maturity options.

6 conclusion

In this paper, we test the out-of-sample predictability of S&P 500 index option
implied volatilities. In particular, we evaluate 14 different models that are based on
historical implied volatility surface information. We investigate both statistical and
economic significance. To examine how long this predictability lasts, we also compare
the results at different forecast horizons. We obtain several interesting results.

Using out-of-sample R20S statistics as the statistical measure, we find that several
models that use the entire historical implied volatility surface information could predict
the implied volatility significantly in the out-of-sample period. These models could
forecast the implied volatility up to 1 week ahead for the call options, and up to 20 days
ahead for the puts.

Using the gain on Leland's alpha as the economic significance measure, we find that
the predictability is of economic significance. The models that use the information of
implied volatility surface generate positive gain on Leland's alphas relative to the
benchmark model, even after transaction costs are accounted for. During the recent
financial crisis, the predictability is weakened but the economic significance becomes
stronger. In particular, the VAR(1) model on volatility changes performs well in
hedging against the downside risk during the crisis.

By calibrating a two-factor stochastic volatility model to option data, we extract a
long-term and a short-term variance component. By regressing different implied
volatilities on these two components, we find that short-maturity implied volatilities are
more related to the short-term variance factor, while long-maturity volatilities are more
related to the long-term variance factor. This helps explain why using them jointly
improves the forecast performance.

Our findings have several interesting implications. Our results show the importance
of historical implied volatility information up to 1 week. We carry out delta-neutral
trading strategies and document the economic significance of option market
predictability. The results of significantly positive abnormal returns provide insight of
profitable investment opportunities for hedge fund managers, and show an
economically effective way of using historical implied volatility curve information for
practitioners.

Our results are consistent with Bakshi et al. (1997) and the emerging component
volatility models. Both short-term and long-term volatilities should be considered in
option pricing models to fully capture the price influence.
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Appendix

A. Coefficients of NS model

This graph plots the time series of B1t, f2t, and B3t that are calibrated from the ATM
implied volatility curve information using the NS model [Color figure can be viewed at
wileyonlinelibrary.com]
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B. Calibration results of two-factor stochastic volatility option pricing model
This appendix reports the calibration results of the two-factor stochastic volatility
option pricing model of Christoffersen et al. (2009).

Call Put

Year ay /by by ay/by by L a3(x100 ” I ay/by by ay /by by L) (=100 I I3

1996 0.08 025 0.03 1.07 0.02 0.09 -0.82 -060 007 000 010 0.74 0.03 040 -0.87 -0.69
1997 004 024 0.06 182 002 010 -083 -066 010 024 008 118 002 037 —0.84 -0.67
1998 0.00 025 0.08 088 0.03 0.05 -0.81 -0.65 0.05 024 010 1.67 004 006 -0.84 -0.67
1999 0.00 025 0.07 273 004 007 -0.50 -068 008 018 008 3.63 0.05 058 -083 -0.68
2000 0.10 024 0.03 1.08 0.02 0.07 -0.83 -0.67 0.10 013 008 094 002 005 -0.83 -067
2001 008 022 0.03 359 0.01 0.05 -0.80 -060 010 0.11 0.07 087 002 005 —0.87 069
2002 0.08 02 0.05 397 0.00 0.05 -0.79 -065 0.10 018 007 1.52 002 005 -0.86 -073
2003 0.00 007 0.04 an 0.01 0.05 -093 -070 009 006 007 143 0.03 0.10 —084 -0.76
2004 0.00 025 0.06 0.8 0.03 0.0 -083 -0.71 0.02 020 008 216 004 005 -0835 -0.68
2005 0.00 025 0.07 9.99 0.11 0.06 -071 -050 003 008 007 175 004 005 —0.81 -0.70
2006 004 0.15 0.03 132 0.03 005 -0.84 -070 010 014 008 1.62 004 064 -0.86 —0.69
2007 002 005 0.04 494 002 035 -0.83 -073 0.10 010 008 121 0.03 005 081 -071
2008 0.00 017 0.07 654 000 0.07 -0.79 -056 010 025 011 1.33 004 005 -0.83 -072
2009 0.00 025 0.10 09 003 005 -0382 -072 001 019 014 173 0.05 008 -082 -073
2010 0.00 025 0.08 335 0.07 007 -0.78 -0s56 007 000 010 322 007 041 -0.86 -0m
2011 0.00 022 0.08 267 004 005 -0.84 -0.65 0.10 003 011 223 006 008 —0384 -0.61
2012 0.00 025 0.08 387 0.03 46.26 -0.83 -083 0.07 000 014 209 0.07 1288 -0.50 -055
2013 010 0.1¢ 0.04 265 005 009 -085 -073 0.06 000 012 126 0.05 0.62 —0.89 -0.68
2014 0.09 025 0.04 469 0.05 297 -0.83 -071 0.10 018 0.09 1.85 0.05 0.78 -0.85 -0.70
2015 002 025 0.07 1.38 004 005 -0.79 -0.73 0.10 024 010 153 004 043 0385 -0.69
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