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Abstract 
We examine the difference in the information content in credit and options markets by 
extracting volatilities from corporate credit default swaps (CDSs) and equity options. The 
standardized difference in volatility, quantified as the volatility spread, is positively related to 
future option returns. We rank firms based on the volatility spread and analyze the returns for 
straddle portfolios buying both a put and a call option for the underlying firm with the same 
strike price and expiration date. A zero-cost trading strategy that is long (short) in the portfolio 
with the largest (smallest) spread generates a significant average monthly return, even after 
controlling for individual stock characteristics, traditional risk factors, and moderate 
transaction costs. 
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1. Introduction 

A credit default swap (CDS) is a contract in which the buyer, who wishes to protect 

themselves against the risk of default, makes a series of payments, often referred to as CDS 

spreads, to the protection seller and, in exchange, receives a payoff if a default event occurs. A 

put option is an option contract giving the buyer the right to sell a specified amount of an 

underlying security at a strike price within a specified time, if the underlying price decreases 

enough below the strike. Corporate CDSs and deep out-of-the-money equity put options are 

related because they both protect investors against downside risk. Numerous studies examine 

the information contents between these two markets. For example, Cao, Yu, and Zhong (2010) 

find that put option implied volatility is a determinant of CDS spreads. Carr and Wu (2007, 

2010a) propose a joint valuation framework to estimate option prices and CDS spreads based 

on their covariation. Carr and Wu (2010b) further develop a method to infer the value of a unit 

recovery claim (URC) from put and CDS spreads and find that the two markets show strong 

co-movements with similar URC magnitudes. Nevertheless, many studies find that the two 

assets are not mutually replaceable because both reflect information and mitigate risks which 

are not being fully captured by the other. Guo (2016) links the two markets by extracting 

volatilities from their prices and provides evidence that the CDS implied volatility (CIV) and 

option implied volatility (OIV) are complementary. Kelly, Manzo and Palhares (2017) argue 

that CIV differs from OIV because the strike price of a CDS lies at a firm's default boundary, 

which is far deeper out-of-the-money than a firm's equity puts and thus, CIV and OIV reflect 

different regions of the risk-neutral asset distribution. Thus, the differences in the information 

content between CDS and option markets could be a new source of information for option 

pricing. 

  

 In particular, volatility is one of the most important determinants of option pricing. It 

is commonly exemplified in the literature that volatility is mispriced, especially for individual 

options. For example, Goyal and Saretto (2009) investigate the stock option returns by sorting 

stocks on the difference between historical realized volatility and at-the-money implied 

volatility. The future volatility of a firm is expected to be close to its long-run historical 

volatility, considering the mean-reversion feature of volatility, and thus, large difference 

between realized volatility and implied volatility suggests that an option is mispriced. Previous 

studies have found that CIV and OIV are related, but different. Specifically, Guo (2016) shows 

evidence that CIV is a more efficient future realized volatility predictor than OIV. Therefore, 

we argue that that a large deviation of OIV from CIV is indicative of option mispricing, from 
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a cross market perspective.  

 

Motivated by these arguments, in this study, we examine how volatility information 

differences between CDS and option markets relate to option pricing. In particular, we provide 

evidence that the normalized spread between the CIV and OIV can forecast the option straddle 

returns in the cross section, even after controlling for various firm characteristics and traditional 

risk factors. A straddle is an options strategy that involves buying both a put and a call option 

for the underlying security with the same strike price and the same expiration date. A trader 

profits from a long straddle when the underlying asset’s volatility rises, regardless of the price 

of the underlying asset. Therefore, a straddle is an ideal speculation strategy to use to study 

volatility mispricing. Following Goyal and Saretto (2009), we choose to study the option 

straddle returns since we are interested in the implications of the relative volatility difference 

implied from credit and option market prices on subsequent option volatilities. 

 

To measure the spread, we use the weekly five-year CDS contract with modified 

restructuring (MR) and select the deeply out-of-the-money put with i) absolute delta less than 

15%, ii) with the longest maturity and iii) with the highest trading volume. This match 

procedure alleviates the concern of liquidity risk. We then estimate the implied volatilities for 

CIV following Kelly, Manzo and Palhares (2017) and for OIV. Finally, we normalize the 

volatility difference between CIV and OIV, named the Z-score. We sort stock straddle options 

into 5 quintiles of equal-weighted portfolios and construct a zero-cost trading strategy that is 

long (short) in the portfolio with the largest (smallest) Z-score of firms. The strategy generates 

a significant average raw monthly return of 6.96% with a t-statistic of 2.89. Another zero-cost 

strategy that is long (short) in the portfolio with a positive (negative) Z-score produces a raw 

monthly return of 4.75% with a t-statistic of 2.90.  

 

These findings hold when we estimate alternative definitions of the CIV and OIV by using 

the Nelson-Siegel model, thus alleviating the concern that our results are driven by the chosen 

CDS and option maturities. We run a panel regression of straddle returns on Z-score controlling 

for usual stock risk characteristics, such as credit rating, size, book-to-market ratio, momentum, 

etc. Furthermore, we identify that skewness and kurtosis have predictive power for the straddle 

return, but with a small magnitude, and the Z-score is robustly significant in all regressions. 

Double sorts on Z-score and firm characteristics further confirm our findings that the abnormal 

returns cannot be fully explained by stock characteristics. We compute the alphas of the long-
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short straddle portfolios using the Fama-French three-factor model, the Carhart four-factor 

model, and the excess return of the zero-beta at-the-money (ATM) S&P 500 index systematic 

straddle factor by Coval and Shumway (2001). The alphas are all significant and slightly larger 

than the raw returns. The only significant coefficient is that of the market factor.  

 

Previous literature identifies a huge impact of transaction costs on the profitability of 

option trading strategies (De Fontnouvelle et al, 2003; Mayhew, 2002; Goyal and Saretto, 

2009). Due to the market friction, some trading strategies seems profitable, but others do not. 

To test the impact of market friction, we investigate whether the abnormal returns still exist by 

adding effective-to-quoted spread ratios to our straddle strategy. De Fontnouvelle, Fisher, and 

Harris (2003) and Mayhew (2002) report that the effective-to-quoted spread ratio is lower than 

50%. In this study, we find that both the raw returns and the alphas become weaker with larger 

effective-to-quoted spread ratios. Nevertheless, they are still significant when the ratio is at 25% 

or less. In addition, returns are more significant for less liquid options. 

 

We discuss two possible explanations for the outstanding performance observed based on 

the Z-score. First, the pair of CIV and OIV values exhibits strong mean-reversion 

characteristics. A low (high) Z-score is related to a subsequent decrease (increase) of OIV. 

Therefore, a strategy that is long (short) in the straddle portfolio with the largest (smallest) 

score could generate a significant average return. We find CIV and OIV are co-integrated for 

390 companies (88.84%) in our sample. This relationship suggests a temporal deviation and a 

relatively mispriced option volatility tends to reverse. On average, the half-life of the decay is 

equal to 1.2 months, which measures the expected time it takes for the CIV-OIV spread to 

revert to half of its initial deviation from the mean. Second, the spread constitutes a term 

premium component that can be predicted using five-year CDS and short-term (near one month) 

option, as we evidence in the main analysis. This result is similar to that of Han, Subrahmanyam, 

and Zhou (2017) who find that the slope of the CDS term structure (five-year minus one-year 

CDS spread) predicts future stock returns. Similarly, Vasquez (2017) shows that the slope of 

the implied volatility term structure (six-month minus five-week volatility on average) is 

related to future option returns. Nonetheless, we are unable to solve the term mismatch between 

CDSs and options, as the shortest CDS in our sample has a constant one-year maturity. Our 

conclusion is further supported by the robustness tests whereby the Nelsen-Siegel model with 

variable maturities is fitted and all the tests are re-run. The results indicate that the term 

premium is unlikely to be a major interpretation of the predictability. 
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Overall, our article is one of the first to document that the volatility spread between CDSs 

and options has a strong, significant relationship with subsequent option straddle returns. 

Previous studies on the option return predictability focus on option and stock markets. For 

example, Cao and Han (2013) find that idiosyncratic volatility is a determinant of delta-hedged 

option returns. Bali and Murray (2013) examine the role of risk-neutral skewness on the cross 

section of option portfolio returns and Goyal and Saretto (2009) show that the difference 

between stock realized volatility and at-the-money option implied volatility predicts option 

returns. Gang, Zhao and Ma (2019) investigates the predictive power of the put-call ratios 

(PCRs) on the China’s 50ETF return. Our paper contributes to the literature by extending the 

work of these authors to the credit market.  

 

The rest of this study is structured as follows. Section 2 introduces the methodology to 

extract CIV and the Nelsen-Siegel model. Section 3 explains the CDS and option data. Section 

4 presents the empirical results and section 5 concludes. 

 

 

2. Methodology 

In this section, we present the methodology to extract the CIV from CDS spreads. We also 

introduce the Nelsen-Siegel model which is subsequently used for robustness tests. 

 

2.1 CDS implied volatility 

We follow the method of Kelly, Manzo and Palhares (2016) to calculate the CIV. Thereby, 

the risk premium in a firm’s debt is approximated by its CDS spread and this  can be combined 

with Merton’s (1974) model to invert the formula to obtain the CIV, notated by !!.  

s(!!, L, T − t, r) = − "
#$% ln	(/(0&) +

'($)*)
, )                        (1) 

0" = $-.	(,)
01√#$%

+ "
&!!√3 − 4	, 0& = 0" − !!√3 − 4                   (2) 

In the above two formulas, s is a firm’s CDS spread, L is the leverage (i.e. a firm’s debt divided 

by its total asset, where debt is the sum of long and short maturity debts), T-t is the time to 

expiration of the CDS, and N(*) is the cumulative density function of standard normal 

distribution.  

 
2.2 The extension of the Nelson-Siegel model based on implied volatility term structure 
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The Nelson-Siegel model proposes an excellent parametric method for modeling interest 

rate term structure (Nelson, 1987). Furthermore, Stein (1989) and Park (2011) propose a two-

factor volatility term structure model based on the Nelson-Siegel model. Nevertheless, their 

model fails to explain the hump-shape which can be observed in the implied volatility term 

structure. Guo, Han and Zhao (2014) propose a three-factor parametric volatility term structure 

model to account for the features observed in reality. Specifically, their model contains two 

mean-reversion processes for both the instantaneous implied volatility and mid-term implied 

volatility. In this model, the instantaneous implied volatility (!%) is assumed to have a mean-

reverting feature with respect to the mid-term implied volatility (!%5 ), while the mid-term 

implied volatility is mean reverting with respect to the long-term implied volatility (!%6 ). This 

can be captured in formulas as follows: 

d!% = −8(!% − !%5 ) 04 + 9!%:√04                          (3) 

d!;% = −<(!%5 − !%6 ) 04 + =!;%:√04                          (4) 

Here, the parameters 8  and <  control the mean-reverting speed and 9  and =  are for 

volatility diffusion magnitude. Under the model setting of (3) and (4), the expected value of 

instantaneous volatility at t+j, conditional on information at time t, can be obtained as > =
e$3	@A0	B = C$4. Furthermore, 

D%E!%56F = EE!;%56F + >6[!% + D(!;%56)]                  (5) 

D%E!;%56F = σ55% + B6(!;% − σ55%)                           (6) 

After integrating the instantaneous implied volatility from t to T, the implied volatility 

between t and T can be obtained as KL%(3): 
	KL%(3) = "

# ∫ [σ55% + >6(!;% − σ55%) + >6!% − B6(!;% − σ55%) − σ55%]0N#
678       

															= σ55% + 9:$"
# -.9 [!% − σ55%] − >

#(!;% − σ55%)             (7) 

In order to simplify the model and avoid overfitting of volatility term structure, > = e$3 is 

used in equation 7: 

KL%(3) = 98% + 9"% "$;
<=>

?@ + 9&%("$;
<=>

?# − C$?#)             (8)  

 

According to Diebold and Li (2006), we can rewrite equation 8 in a form similar to the 

Nelson-Siegel model for implied volatility term structure: 

	KL%(3) = 98% + 9"% "$;
<A>

B@ + 9&%("$;
<A>

B@ − C$B#)             (9) 

Here, 98, 9" and 9& represent long-, short- and medium-term volatility, respectively. We 
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then use this extension of the Nelson and Siegel model for CIV term structure. Finally, we run 

robust tests with the fitted parameters. 

 
 
3. Data 

The dataset is comprised of weekly CDS data on 439 US companies from WRDS-Markit 

between Jan 2002 to Dec 2014. We apply several criteria to select CDS contracts for inclusion 

in the investigation. Firstly, the selected companies need to have more than one-year of CDS 

data observations. Thus, companies issuing CDSs on an infrequent basis are excluded. 

Secondly, the selected CDSs need to have modified restructuring (MR). This criterion is used 

to eliminate the influence of the recovery rate on CDS valuation. Then, we match the CDS 

reference list to download the US-firm individual option data from OptionMetrics in WRDS, 

which includes all the Greeks, trading volumes, bid price, ask price, implied volatility, etc. 

Since our purpose is to investigate the information with respect to downside risk, we select 

deeply out-of-the-money put options with a positive bid and ask price, trading volume, open 

interest and implied volatility, and with an absolute delta less than 15%2. After the above 

filtering, there are still cases where several put options exist for one specific date for the same 

company. To alleviate the concern of a liquidity premium and maturity mismatch against CDSs, 

we choose the puts with the longest maturity and the highest open interest.  

 

Our data contains CDSs with 1-year, 2-year, 3-year, 5-year, 7-year and 10-year maturities. 

We use 5-year CDSs for our main analysis as they are the most actively traded, and CDSs with 

other maturities for robustness tests. In order to obtain a stable holding period for portfolios, 

we choose the option contracts which have a maturity close to one month and which are close 

to being at-the-money (ATM). In general, the selected call option has a moneyness ranging 

from 0.975 to 1.025. The corresponding put option is selected with the same strike and maturity 

time as those of the call option. After the expiration of the first option contracts, option 

contracts for the following month are selected with the same criteria.  

  

Panel A of Table 1 lists the summary statistics for CIV, OIV and Z-score. During the 13-

year period, the average CIV and OIV are 43.9% and 37.5%, respectively. The CIV has a lower 

standard deviation (14.4%) than that of the OIV (17.7%). Moreover, the correlation between 

���������������������������������������������������
�� Note that option returns are computed only for those which are close to being at-the-money (ATM). We use deeply out-of-
the-money put options only to compute the Z-score.�
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the CIV and OIV is 35.9%, on average. In total, the dataset comprises 439 firms with 667 weeks 

of observations. 

 Table 1 Summary Statistics of data and option portfolios sorted by Z-score 
Panel A presents the summary statistics about mean, standard deviation, 10% percentile, 90% 
percentile, maximum and minimum of CIV, OIV, option maturity, equity, debt, risk free rate, 
CDS spread(s), correlation coefficients, and option delta. Sample contains 439 companies from 
Jan 2002 to Dec 2014. Panel B reports the statistics of sorted option portfolios. Portfolios 1 to 
5 are obtained by sorting Z-score from bottom to top and equal-weighted. Portfolios N and P 
are obtained by sorting by the sign of Z-score. ∆, Γ	and	Υ is the delta, gamma and vega, 
respectively. The sample includes 439 companies and 168646 pairs of call and put. Period 
begins with 2002 to 2014. 
 
�����������"��!#��� %� �       
Variables Mean S.D. Min 0.25 Median 0.75 Max Total 
# of Firms �  �  �  �  �  �  �  439 
# of Weeks �  �  �  �  �  �  �  667 
# of Observations 384.68 206.17 52 192 399 589 667 �  
Maturity(day) 308.46 261.32 2 80 206 535 969 �  
E(Millions) 27527.31  47261.01  62.46  4931.34  12152.99  27317.19  525785.64  �  
D(Millions) 14338.08  63195.21  0.21  1451.90  3532.00  8224.00  916322.00  �  
r(%) 1.71  1.77  0.09  0.19  1.06  3.16  5.30  �  
s(%) 1.52  2.41  0.02  0.39  0.75  1.67  139.39  �  
CIV(%) 43.90  14.42  5.17  35.29  42.83  50.58  295.90  �  
OIV(%) 37.54  17.70  3.10  25.94  33.35  43.92  240.14  �  
cor(s,CIV) 47.78  37.70  -54.49  22.60  54.69  79.80  99.76  �  
cor(CIV,OIV) 25.91  38.02  -87.49  3.07  31.54  52.87  93.60  �  
Put's delta -0.10  0.04  -0.15  -0.13  -0.10  -0.07  0.00  �  

�����������"������ "�����!� �  �  �  �  �     
�  1 2 3 4 5 P N � �

Z-score -1.051 -0.338 0.019 0.373 0.952 0.646 -0.667  
CIV 0.396 0.402 0.417 0.436 0.479 0.45 0.398  
OIV 0.455 0.386 0.357 0.343 0.328 0.342 0.413  
d.civ -0.004 -0.002 0 0.001 0.003 0.002 -0.002  
d.oiv 0.033 0.002 -0.006 -0.012 -0.021 -0.015 0.014  
         
�

. 
�

0.506 0.504 0.504 0.505 0.506 0.506 0.505 
 

 0.131 0.125 0.122 0.118 0.117 0.12 0.128  
�  5.143 5.598 5.976 6.396 6.59 6.347 5.369 � �

 
 

4. Empirical results 

The mean-reverting feature in volatility modelling is widely acknowledged, both in 

academic and in industry. Individual stock volatility has an average autocorrelation near 0.7 

and the future implied volatility fluctuates around the level of the historical volatility (Goyl 

and Saretto, 2009). This mean-reverting feature also exists between the CIV and OIV (Guo, 
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2016), which are co-integrated for 390 companies (88.84%) in our sample. That is, the short-

maturity option implied volatility is likely to move closer to the long-maturity CDS implied 

volatility. The co-integrated relationship between the CIV and OIV indicates a large deviation 

will not last long and, if an option is mispriced, the straddle is relatively undervalued when the 

OIV is lower than the CIV, and vice versa3. 

 

4.1 Option Portfolio Formation 

The Z-score is calculated following Guo (2016) and Balvers, Wu and Gilliland (2000). On 

each date t0, we firstly calculate the series of :C,% as SKLC,% = 9C ∗ UKLC,% + :C,% , V = [1,2,…/] 
for each CDS, i. Then, the standard deviation, !C	, and average mean, ZC, of :C,% are calculated 

up to t0. Finally, we estimate the Z-score as EF,G$HF0F
.  

We calculate the straddle returns for each firm and construct two types of equal-weighted 

option portfolios by sorting the Z-scores of the firms. We group equity options into five 

portfolios, from bottom to top, based on the value of the Z-score. The bottom (1st) option 

portfolio has the lowest average Z-score, while the top (5th) option portfolio has the highest Z-

score. Hence, if volatility mispricing exists and implied volatility follows a mean-reverting 

process around the CIV, the bottom straddle option portfolio will be underpriced, while the top 

straddle option portfolio will be overpriced. We also separate option portfolios into two parts, 

based on the negative and positive Z-score. On average, 88 companies with 90 monthly 

observations are in each quintile of option portfolios, while the positive/negative (P/N) option 

portfolio has on average of 220 companies with 90 monthly observations.  

 

Panel B of Table 1 presents the summary statistics of equal-weighted option portfolios. 

The patterns of OIV and CIV in the quintile portfolios are different. The OIV decreases from 

0.455 (bottom portfolio) to 0.328 (top portfolio). The opposite pattern exists for CIV, whereby 

it increases from 0.396 (bottom portfolio) to 0.479 (top portfolio). The variation in OIV is 

higher than that of CIV, as the difference in the CIV of the top and bottom portfolios is 0.083, 

while it is 0.127 for the OIV. The Greeks for the selected ATM options are delta, gamma and 

vega. The delta of the call is invariant among the different quintiles and for P/N portfolios. 

Gamma decreases from the bottom to top quintiles with values ranging from 0.131 to 0.117, 

while vega increases from bottom to top, with values ranging from 5.143 to 6.590.  

���������������������������������������������������
3 On average, the half-life of the decay is equal to 1.2 months, which measures the expected time it takes for the spread to 
revert to half its initial deviation from the mean. This determines the optimal holding period for a mean-reverting position. 
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Table 1 Summary Statistics of data and option portfolios sorted by Z-score 
Panel A presents the summary statistics about mean, standard deviation, 10% percentile, 90% 
percentile, maximum and minimum of CIV, OIV, option maturity, equity, debt, risk free rate, 
CDS spread(s), correlation coefficients, and option delta. Sample contains 439 companies from 
Jan 2002 to Dec 2014. Panel B reports the statistics of sorted option portfolios. Portfolios 1 to 
5 are obtained by sorting Z-score from bottom to top and equal-weighted. Portfolios N and P 
are obtained by sorting by the sign of Z-score. ∆, Γ	and	Υ is the delta, gamma and vega, 
respectively. The sample includes 439 companies and 168646 pairs of call and put. Period 
begins with 2002 to 2014. 
 
�����������"��!#��� %� �       
Variables Mean S.D. Min 0.25 Median 0.75 Max Total 
# of Firms �  �  �  �  �  �  �  439 
# of Weeks �  �  �  �  �  �  �  667 
# of Observations 384.68 206.17 52 192 399 589 667 �  
Maturity(day) 308.46 261.32 2 80 206 535 969 �  
E(Millions) 27527.31  47261.01  62.46  4931.34  12152.99  27317.19  525785.64  �  
D(Millions) 14338.08  63195.21  0.21  1451.90  3532.00  8224.00  916322.00  �  
r(%) 1.71  1.77  0.09  0.19  1.06  3.16  5.30  �  
s(%) 1.52  2.41  0.02  0.39  0.75  1.67  139.39  �  
CIV(%) 43.90  14.42  5.17  35.29  42.83  50.58  295.90  �  
OIV(%) 37.54  17.70  3.10  25.94  33.35  43.92  240.14  �  
cor(s,CIV) 47.78  37.70  -54.49  22.60  54.69  79.80  99.76  �  
cor(CIV,OIV) 25.91  38.02  -87.49  3.07  31.54  52.87  93.60  �  
Put's delta -0.10  0.04  -0.15  -0.13  -0.10  -0.07  0.00  �  
�����������"������ "�����!� �  �  �  �  �     
�  1 2 3 4 5 P N � �

Z-score -1.051 -0.338 0.019 0.373 0.952 0.646 -0.667  
CIV 0.396 0.402 0.417 0.436 0.479 0.45 0.398  
OIV 0.455 0.386 0.357 0.343 0.328 0.342 0.413  
d.civ -0.004 -0.002 0 0.001 0.003 0.002 -0.002  
d.oiv 0.033 0.002 -0.006 -0.012 -0.021 -0.015 0.014  
         
�

. 
�

0.506 0.504 0.504 0.505 0.506 0.506 0.505 
 

 0.131 0.125 0.122 0.118 0.117 0.12 0.128  
�  5.143 5.598 5.976 6.396 6.59 6.347 5.369 � �

 
 

4.2 Option portfolio returns 

Since our interest in this paper is to examine the subsequent straddle returns based only on 

volatility characteristics, in this section, we test the performance of our portfolios sorted by the 

Z-scores as described in the previous section. Specifically, we hold the grouped portfolios for 

one month and estimate each group’s out-of-sample returns as well as the long-short neutral 

portfolio returns. 
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We select the Wednesday data due to its high liquidity among the weekdays. On each 

Wednesday, we compute the trading signal (Z-score) and then execute the trading strategies 

using the closing price on the same day. A straddle return is calculated as the difference between 

the final payoff and the beginning value. Here, the beginning value is the sum of the average 

of bid and ask quote prices for call and put options and the final payoff is max(S-K, K-S). We 

then compute portfolio returns for each equal weighted quintile or P/N portfolio. 

 

Table 2 reports the option portfolio returns sorted by Z-score, including the five quintile 

portfolios and the P/N portfolios. The 5-1 portfolio is constructed by going long on the 5th 

quintile portfolio and short selling the 1st quintile portfolio. The P/N portfolio is a combination 

of a long portfolio with positive Z-score and a short selling portfolio with negative Z-score. 

Both the five quintile and P/N portfolios show insignificant returns. Nevertheless, the straddle 

return increases from -2.25% to 4.54%, spanning from the bottom to top portfolios. The 

positive straddle portfolio earns a higher return than the negative straddle portfolio at 1.82%, 

as opposed to the -2.93% for the negative portfolio. The long-short portfolios show significant 

and positive returns: the 5-1 straddle has a monthly return of 6.96% with a Newey-West 

adjusted t-statistic of 2.8864. The P-N straddle (positive minus negative portfolio) has a 

monthly return of 4.75% with an adjusted t-statistic of 2.8979. Both are significant at the 1% 

significance level.  

 

Table 2 Returns of option portfolios sorted by Z-score 
Option price is calculated as the average of closing bid and closing ask price. The terminal 
payoff of call option is max([#-K, 0) while that of put option is max(K-[#, 0). K is the strike 
price and [# is the stock price at maturity time. The Straddle portfolios are equal-weighted. 
T-statistics is corrected by the Newey and West (1987). The sample includes 439 companies 
and 168646 pairs of call and put. Period begins with 2002 to 2014. 

 Straddle Returns   
  1(low) 2 3 4 5(high) P N 5-1 P - N 
mean -0.0225 -0.0212 -0.0327 0.0029 0.0454 0.0182 -0.0293 0.0696*** 0.0475*** 
t-value -0.9840 -0.8109 -1.2636 0.1093 1.4066 0.6902 -1.1875 2.8864 2.8979 
p-
value 0.3255 0.4177 0.2068 0.9130 0.1600 0.4903 0.2355 0.0040 0.0039 

          
 
 

4.3 Controlling for risk and stock characteristics 

In this section, we analyze the contribution of option portfolio returns. We follow the 

method in Goyal and Saretto (2009) by running a multi-factor regression with option returns 



���
�

on traditional stock factors. We investigate whether these traditional stock factors can explain 

the abnormal return obtained in the last section. Then, we test the option portfolio returns with 

a double sorting method on Z-score and firm characteristics.  

 

4.3.1 Traditional risk factors 

We run a regression of 5-1 and P/N straddle option returns on various risk factors, 

including the Fama-French three-factor model, the Carhart four-factor model and the excess 

return of the zero-beta ATM systematic straddle (ZB-STRAD-Rf). We use the excess return of 

the zero-beta ATM S&P 500 straddle index by Coval and Shumway (2001) to control for the 

systematic straddle risk. We calculate daily ZB-STRAD-Rf and cumulate it to attain a monthly 

factor. This can be represented as follows:  

\I,% = 8I + 9I ∗ ]% + :I,%                  (10) 

where \I,% is the return of a straddle option portfolio and ] are the risk factors. The linear 

risk-factor model cannot handle and explain all risk premiums in asset pricing (Goyal and 

Sarreto, 2009). Therefore, this regression is only used to test whether the return of the straddle 

option portfolio is related to the systematic risk factors. 

 

Table 3 reports the regression results. The loadings on SMB, HML and MoM are all 

insignificant at the 10% significance level. Moreover, the loading on ZB-STRAD-Rf is also 

insignificant for all regressions, indicating our straddle option portfolios, sorted by the Z-score, 

are not related to systematic volatility risk. The market factor is the only significant variable 

and has negative loadings for both the 5-1 and P/N straddle portfolios, which is evidenced by 

the beta value shown in Table 1, which decreases from 1.29 to 1.05 from the 1st to the 5th 

portfolio. A similar observation applies for the P/N straddle option portfolios. The alpha is 

strongly significant at the 1% confidence level and is between 5.10% to 7.90%, which is even 

larger than the raw return reported in Table 2, which suggests that traditional stock risk factors 

do not explain our straddle returns. 
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Table 3 Risk-adjusted option return 
 This table presents the regression results of returns the portfolio 5-1 and portfolio P-N: 
\I,% = 8I + 9I ∗ ]% + :I,% The risk factors include the Fama and French(1993) three factors 
(MKT-Rf, SMB, HML), Carhart(1994) momentum factor(MoM), and the Covol and 
Shumway(2001) excess zero-beta S&P 500 straddle factor (ZB-STRAD-Rf). The first row is 
for the regression coefficients and the second row is the corresponding t-statistics corrected by 
the Newey and West(1987). 
 

 Straddles 
 5-1   P-N 

  (1) (2)   (3) (4) 
Alpha 0.079*** 0.076***  0.052*** 0.051*** 

 3.210 3.082  3.424 3.130 
      

MKT-Rf -1.461*** -1.231**  -0.719 -0.584 
 -2.992 -2.226  -1.638 -1.166 
      

SMB  1.361   0.899 
  1.593   1.337 
      

HML  -0.346   -0.787 
  -0.456   -1.157 
      

MoM  0.550   0.114 
  1.292   0.277 
      

ZB-STRAD-
Rf 0.031 0.060  0.012 0.028 

 0.382 0.821  0.201 0.501 
      

Adj R2 0.030 0.039   0.011 0.018 
 

 

4.3.2 Stock characteristics 

We run a cross-sectional regression of abnormal return on lagged stock characteristics to 

examine their relationships. The specific model setting follows that of Brennan, Chordia and 

Subrahmanyam (1998) and Goyal and Sarreto (2009). Specifically, we define  

\C,% − 9Ĵ ∗ ]% = 88,% + _",% ∗ `C,%$" + aC,%                                    (11) 
where \C,%  is the return of the individual straddle option and Z represents the stock 

characteristics. The 9Ĵ is obtained by running the multi-factor pricing model with F factors, 

as described in section 4.3.1. Z factors include the Z-score and stock characteristics.  

 

The panel regression results on monthly observations are presented in Table 4. We cluster 
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standard errors by both company and time and control for the year fixed effects. The stock 

characteristics include the CDS slope(5-year CDS spread minus 1-year CDS spread), Dummy 

(Rating over BBB is 1 and others are 0), s.d of civ and s.d of oiv (standard deviation of CIV 

and OIV in the last month), Beta (beta between the Portfolio 5-1), d(civ) and d(oiv) (changes 

in the CIV and OIV over last month), Size (log of market capitalization), B/M ratio (Book to 

market ratio), MoM (the last 6-month cumulative return), Ret(t-1) (the last month stock return), 

LEV(debt divided by sum of debt and equity), TO (monthly trading volume divided by total 

common shares outstanding), IVOL(idiosyncratic volatility measured relative to the Fama and 

French three factor model), Skew(skewness of the last 1 year daily stock log return), and 

Kurt(kurtosis of the last 1 year daily stock log return), in order to control for the spread term 

premium in Han, Subrahmanyam, and Zhou (2017), credit rating, systematic risk, momentum, 

reversal, etc. Among them, the credit rating, size, B/M ratio, MoM, LEV, TO and IVOL show 

predictive power on straddle returns. Both the skewness and kurtosis also have predictive 

power on straddle return but with a small magnitude effect. The Z-score continues to be 

robustly significant for predicting future straddle returns in each regression. 
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Table 4 Individual option returns controlling for stock characteristics (Cross-sectional regressions) 

We estimate the following cross-sectional regression for individual option returns: 
!!,# − #$$ ∗ &# = (%,# + *&,# ∗ +!,#'& + ,!,# Where F are the Fama and French (1993) three factors, the Carhart (1994) momentum factor, and the 
Covol and Shumway (2001) excess zero-beta S&P 500 straddle factor. The characteristics include Z-score, CDS slope(5-year CDS spread minus 
1-year CDS spread), Dummy (Rating over BBB is 1 and others are 0), s.d of civ and s.d of oiv (standard deviation of CIV and OIV in last month), 
Beta (beta between Portfolio 5-1), d(civ) and d(oiv) (changes in CIV and OIV over last month), Size (log of market capitalization), B/M ratio 
(Book to market ratio), MoM (last 6-month cumulative return), Ret(t-1) (last month stock return), LEV(debt divided by sum of debt and equity), 
TO (monthly trading volume divided by total common shares outstanding), IVOL(idiosyncratic volatility measured relative to the Fama and French 
three factor model), Skew(skewness of last 1 year daily stock log return), and Kurt(kurtosis of last 1 year daily stock log return). The last row 
shows the adjusted R2. All regressions include the year fixed effects and cluster the standard errors by firm and month. 
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
Z-score 0.021*** 0.019*** 0.039*** 0.039*** 0.052*** 0.039*** 0.040*** 0.040*** 0.042*** 0.045*** 0.051*** 0.049*** 0.050*** 0.049*** 

 2.798 2.491 4.683 4.613 7.117 4.732 5.062 4.718 4.822 4.918 6.708 6.322 5.891 6.558 
CDS slope 0.878             
  0.837             
Dummy    0.042***            
   4.490            
civ    0.021           
    0.524           
oiv     0.115***          
     2.626          
s.d of civ      -0.024         
      -0.116         
s.d of oiv       0.032        
       0.459        
Beta        -0.472       
        -0.929       
d(civ)         -0.032   -0.208   
         -0.175   -0.975   
d(oiv)          0.131   0.099  
          1.449   1.078  
Size, log(VE)           0.015*** 0.013*** 0.012*** 0.015*** 
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           2.841 2.405 2.347 2.797 
B/M ratio           0.295*** 0.219*** 0.219*** 0.294*** 

           6.665 5.297 5.293 6.741 
MoM           0.069*** 0.065*** 0.066*** 0.078*** 

           3.938 3.880 3.960 4.326 
Ret(t-1)           0.082 -0.023 -0.010 0.100* 

           1.504 -0.356 -0.161 1.839 
LEV             -0.169*** -0.158*** -0.156*** -0.161*** 

           -3.870 -3.863 -3.825 -3.826 
TO           0.410*** 0.459*** 0.457*** 0.426*** 

           9.314 10.215 10.208 9.737 
IVOL           -0.760*** -0.785*** -0.792*** -0.796*** 

           -7.321 -7.907 -8.031 -7.533 
Skew              -0.034*** 

              -4.785 
Kurt              0.004*** 

              3.480 
Adj R2 0.000 0.000 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.026 0.021 0.022 0.028 
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In order to provide a robust result, we conduct a doubt sort on straddle return with Z-score 

and stock characteristics. Double sort provides a more robust way than a cross-sectional panel 

regression, due to lack of imposing linear relationship restriction between return and 

explanatory variables. We first sort options into quintiles based on stock characteristics and, 

within each quintile, we sort the options into the 1-5 or P/N quintile based on the Z-score. 

 

Table 5 reports the average monthly return for option portfolios and the respective t-

statistics corrected by the Newey and West (1987) method for eight characteristics that are 

significant in Table 4: Size, B/M, MoM, LEV, TO, IVOL, Skew and Kurt. Conducting the 

double-sort based on the eight characteristics does not change the return pattern in the quintile 

straddle portfolios. The 1st quintile portfolio has an average monthly return between -2% and -

2.7%, while the 5th quintile portfolio has an average monthly return between 3.5% and 5.4%. 

Moreover, the 5-1 straddle portfolio has an average return between 5.8% and 7.9% and the P-

N straddle portfolio has a mean monthly return between 4.6% and 5%. These straddle return 

results are similar to the results based on the one-way sort using the Z-score, thus providing 

further evidence that these stock characteristics cannot explain all of the abnormal straddle 

return.  
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Table 5 Option Portfolio returns controlling for stock characteristics (double-sort) 
We first sort options into quintiles based on stock characteristics and, within each quintile, we 
sort the options in the 1-5 or P/N portfolios based on Z-score. This table reports the average 
monthly return and its t-statistics corrected by the Newey and West (1987). 
 

Quintile Portfolio: Straddle Returns 
Control   1 2 3 4 5 P N 5-1 P-N 
size   -0.023 -0.024 -0.021 0.011 0.035 0.022 -0.028 0.059 0.050 

  -0.982 -0.896 -0.769 0.363 1.124 0.790 -1.129 2.672 2.999 
           

bm  -0.025 -0.001 -0.024 0.004 0.035 0.024 -0.022 0.060 0.046 
  -1.031 -0.020 -0.918 0.147 1.108 0.918 -0.887 2.486 2.598 
           

mom  -0.027 -0.031 -0.018 -0.010 0.037 0.014 -0.032 0.064 0.047 
  -1.209 -1.293 -0.680 -0.406 1.203 0.558 -1.364 2.632 2.854 
           

lev  -0.022 -0.014 -0.010 -0.010 0.041 0.021 -0.028 0.063 0.049 
  -0.898 -0.541 -0.402 -0.356 1.269 0.781 -1.125 2.620 2.981 
           

to  -0.026 -0.031 -0.017 -0.004 0.054 0.021 -0.027 0.079 0.048 
  -1.020 -1.306 -0.657 -0.141 1.631 0.780 -1.088 3.276 2.876 
           

ivol  -0.026 -0.010 -0.020 -0.006 0.039 0.022 -0.028 0.065 0.050 
  -1.101 -0.360 -0.754 -0.229 1.192 0.813 -1.138 2.643 3.014 
           

skew  -0.024 -0.016 -0.025 0.002 0.036 0.020 -0.028 0.060 0.048 
  -1.017 -0.619 -0.861 0.092 1.115 0.748 -1.125 2.512 2.916 
           

kurt  -0.020 -0.024 -0.014 -0.005 0.038 0.021 -0.028 0.058 0.049 
    -0.893 -0.894 -0.520 -0.165 1.192 0.758 -1.138 2.459 2.938 

 

 

4.4 Robustness tests using the Nelson-Siegel model 

In this section, we estimate the CIV and OIV using alternative definitions as per the 

Nelson-Siegel model. This serves to mitigate concerns that our results are driven by the chosen 

CDS and option maturities. We apply the Nelson-Siegel model on the CDS and option implied 

volatility term structures to obtain the parameters and re-run all the tests. Specifically, we use 

the value for 98 from equation 9 to replace CIV and OIV, and then calculate a new Z-score 

and produce the straddle return.  

 

Table 6 reports the summary statistics for the parameters estimated using the Nelson-Siegel 

model for the CDS implied volatility term structure. To fit the model, we use the 1-, 3-, 5-, 7- 
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and 10-year CDSs for the CDS term structure and the 30-, 60-, 91-, 122-, 152-, 182-, 273-, 

365-, 547-, and 730-day maturity options obtained from the volatility surface in OptionMetrics 

for the option term structure. 98 for the CIV term structure is slightly higher than that for the 

OIV term structure but has a lower standard deviation. The average correlation coefficient 

between them is 0.15, with a standard deviation of 0.366.  

 

Table 6 Summary Statistics for parameters in the Nelsen-Siegel model 
 

  mean st.d 0.25 0.75 max min median Total 
# of company        413 
# of week        666 
observation.civ 361 209 169 565 666 8 370  
observation.oiv 387 203 199 586.5 666 52 405  
civ.b0 0.356 0.119 0.290 0.404 5.968 0.000 0.345  
civ.b1 0.524 0.299 0.378 0.686 15.040 -4.317 0.537  
civ.b2 -0.132 0.387 -0.199 0.001 5.855 -25.551 -0.005  
oiv.b0 0.313 0.131 0.229 0.364 3.342 -0.031 0.284  
oiv.b1 0.017 0.112 -0.044 0.051 2.900 -1.690 -0.003  
oiv.b2 0.004 0.175 -0.073 0.077 7.215 -5.498 0.000  
cor(civ,oiv).b0 0.150 0.366 -0.098 0.395 0.943 -0.929 0.200  
cor(civ,oiv).b1 -0.041 0.205 -0.171 0.083 0.681 -0.646 -0.034  
cor(civ,oiv).b2 0.038 0.129 -0.028 0.119 0.457 -0.628 0.037   

 

Figure 1 plots the time series of estimated parameters when values are averaged for the 

413 companies in the sample. 98 for CIV fluctuates more than in the original CIV value. In 

particular, during the 2008 financial crisis period, both the 98  for CIV and the OIV term 

structure increase significantly, with the peak time around the beginning of the year 2009. 
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Figure1. Time series of parameters fitting by the Nelsen-Siegel model in CIV and OIV 
term structure. 

The first one is for CIV, the second one is for OIV and the last one shows the changes for beta0 
of CIV and OIV between 2002 and 2014. 

 

 

 
 

Table 7 presents the returns of the option portfolios constructed using the Z-score based 
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on 98. The results in Table 7 show a similar pattern as in Table 2. Specifically, the quintile 

straddle portfolio returns have an increasing pattern from bottom to top, ranging from -6.1% to 

1.6% per month. The 5-1 straddle return is 7.8% per month, and the P/N straddle portfolio 

return is 6.2%. The performance for the 5-1 or P/N straddle portfolios is somewhat higher than 

for the previous portfolios, as presented in Table 2.  

 

Table 7 Returns of option portfolios sorted by Z-score (the Nelsen-Siegel model) 
All option portfolio construction follows the Table 3. T-statistics is corrected by the Newey and 
West(1987). 

Straddle Returns 

  1(low) 2 3 4 5(high) P N 5-1 P - N 

mean -0.061*** -0.026 -0.034 -0.006 0.016 0.017 -0.044* 0.078*** 0.062*** 

t-value -2.547 -1.001 -1.210 -0.241 0.587 0.671 -1.739 3.934 4.032 

p-value 0.011 0.317 0.227 0.810 0.557 0.503 0.083 0.000 0.000 

          
 
 In summary, our conclusions are further supported by the robustness tests, whereby a 

Nelsen-Siegel model is fit, with variable maturities, and all tests are re-run. This further 

indicates that the abnormal straddle returns achieved based on the Z-score are unlikely to be 

driven by a certain maturity. 

 

4.5 Transaction costs: bid-ask spreads 

In the above tests, we take the mid-price as the trading price. However, in reality, an asset 

can only be bought at the ask price and can only be sold at the bid price. Literature shows 

evidence that the real bid-ask spread is smaller than the quoted bid-ask spread, but it is still 

significant (De Fontnouvelle et al, 2003; Mayhew, 2002; Goyal and Saretto, 2009). In this 

section, we follow the process of Goyal and Saretto (2009) and consider the prices at the 25%, 

50%, 75%, 100% range of the quoted bid-ask spread in trading straddles.  

 

We also group option portfolios by liquidity to address concerns about the impact of 

liquidity risk. In addition, we compute two different measures to access liquidity. The first 

measure is the average bid-ask spread of all options traded in the previous month for the firm 

and the second measure is the average daily trading volume of options traded in the previous 

month for the firm. We first sort options into quintile portfolios based on the Z-scores. Then, 

in each quintile straddle portfolio, we sort options into two portfolios with low and high 

liquidity. The returns of the 5-1 and P/N portfolios are subsequently computed for each 
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portfolio. 

 

Table 8 reports the long-short portfolios under different efficient bid-ask spreads. 

Accounting for transaction costs leads to a deterioration in the performance of the long-short 

strategy. Without transaction costs, the 5-1 portfolio earns 6.96% monthly raw return. However, 

this return decreases dramatically to -4.5% per month under the condition of a 100% efficient 

bid-ask spread. The P/N portfolios exhibit the same effect, whereby raw returns fall from 4.7% 

per month to -6.5% per month. However, De Fontnouvelle, Fisher, and Harris (2003) and 

Mayhew (2002) report that the effective-to-quoted spread ratio is lower than 50%. Thus, it is 

interesting to note that, under the 25% quoted bid-ask spread condition, both the alpha and raw 

return in the 5-1 or P/N portfolios are positive and significant at the 10% significance level. 

Raw returns and alphas are 4.2% and 4.8%, respectively, for the 5-1 portfolio and 2% and 2.3%, 

respectively, for the P/N portfolio.  

 

Option liquidity also influences the performance of the long-short strategy. The low 

liquidity portfolio performs better than the high liquidity portfolio. For the 5-1 portfolios, the 

return of the low liquidity portfolio decreases from 10.3% to 0.2%. However, this return is still 

significant at the 5% significance level under the 50% quoted spread condition, with a monthly 

return of 5.4%. By contrast, the return of the high liquidity portfolio decreases from 3.8% to -

9.6%. For the P/N portfolios, the low liquidity portfolio decreases from 7.5% to -2.3%, but this 

return is significant at the 1% level based on the 25% quoted spread, with a monthly return of 

5.1%. The return of the high liquidity portfolio decreases dramatically from 2.5% to -10.8%. 

If the other measure of liquidity based on the average trading volume of options is applied, 

returns exhibit similar patterns.  

 

We conclude that transaction cost dramatically decreases the trading performance of this 

long-short strategy. Both the raw returns and alphas become weaker as the effective-to-quoted 

spread ratios become larger. Nevertheless, they are still significant when the ratio is at 25% or 

less. In addition, returns are more significant for less liquid options. 
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Table 8 Impact of Liquidity and transaction costs 
Option portfolios are sorted into two groups based on option liquidity. Average bid-ask spread 
means the average bid-ask spread of all the options traded in the last month of a firm; average 
trading volume means the average of the daily option trading volume of the firm. MidP is the 
price at the middle of bid and ask; ESPR is the effective spread while QSPR is the quoted 
spread. The first row is the average return and the second row is its t-statistics. 
 

 5-1  P-N 

   ESPR/QSPR    ESPR/QSPR 

  MidP 25% 50% 75% 100%   MidP 25% 50% 75% 100% 

All 0.070*** 0.042*** 0.012 -0.015 -0.045***  0.047*** 0.020* -0.010 -0.036*** -0.065*** 

 4.867 2.925 0.798 -1.081 -3.116  4.508 1.888 -0.872 -3.370 -5.960 

            
Alpha 0.076*** 0.048*** 0.017 -0.010 -0.040***  0.051*** 0.023** -0.007 -0.034*** -0.063*** 

 5.434 3.420 1.214 -0.720 -2.833  4.834 2.158 -0.654 -3.186 -5.809 

            
  Based on average bid-ask spread of options 

Small 0.038** 0.006 -0.032 -0.059*** -0.096***  0.025* -0.006 -0.045*** -0.072*** -0.108*** 

 1.967 0.323 -1.518 -2.948 -4.650  1.724 -0.431 -2.599 -4.493 -6.332 

            
Large 0.103*** 0.079*** 0.054** 0.029 0.002  0.075*** 0.051*** 0.027 0.002 -0.023 

 4.271 3.280 2.267 1.221 0.103  4.330 2.957 1.567 0.146 -1.355 

            
  Based on average trading volume of options 

Low 0.094*** 0.061*** 0.024 -0.004 -0.041*  0.067*** 0.035** 0.000 -0.028* -0.061*** 

 3.859 2.551 0.979 -0.178 -1.684  4.094 2.189 -0.004 -1.754 -3.836 

            
High 0.050*** 0.028 0.006 -0.017 -0.042**  0.036** 0.013 -0.011 -0.036* -0.064*** 

  2.578 1.440 0.289 -0.886 -2.113   2.085 0.714 -0.620 -1.895 -3.078 
 

 

4.6 Subsample analysis around the Global Financial Crisis (GFC) 

In this section, we conduct a robustness test using sample periods around the GFC. In 

particular, we compute the option straddle portfolio returns during the year 2007-2009 in order 

to examine whether our results are driven by certain turbulent years. Table 9 reports the option 

portfolios returns sorted by Z-score. The straddle return increases from -1.31% to 9.15% for 

the bottom and top portfolios. The positive straddle portfolio earns a higher return than the 

negative straddle portfolio at 8.13% and 2.13%, respectively. Both the long-short 5-1 and P/N 

portfolios show significant returns at the 10% significance level. Compared with the results for 

the whole sample in Table 2, the straddle returns become large but less significant, due to the 

volatile market. Hence, despite the increasing standard deviation of sorted portfolio returns, 

our findings remain robust.  
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Table 9 Straddle returns during the 2008 financial crisis period 
Option price is calculated as the average of closing bid and closing ask price. The terminal 
payoff of call option is max([#-K, 0) while that of put option is max(K-[#, 0). K is the strike 
price and [# is the stock price at maturity time. The Straddle portfolios are equal-weighted. 
T-statistics is corrected by the Newey and West (1987). The sample period is from 2007 to 
2009. 

 
�  1(low) 2 3 4 5(high) P N 5-1 P-N 

mean -0.0131  0.0250  0.0558  0.1048  0.0915  0.0813  0.0213  0.1046* 0.0600* 

t-value -0.1536  0.2382  0.5300  1.0099  0.7295  0.7257  0.2059  1.7847  1.7206  

p-value 0.8783  0.8123  0.5974  0.3152  0.4675  0.4698  0.8373  0.0776  0.0887  

 

 

5. Conclusion 

We document a positive relation between the Z-score and straddle returns in the cross 

section, where Z-score is computed as the normalized spread between the CDS and option 

implied volatilities. We rank stocks according to the Z-score and investigate the subsequent 

one-month straddle returns. We sort straddle options into 5 quintiles of equally-weighted 

portfolios and construct a zero-cost trading strategy that is long (short) in the portfolio with the 

largest (smallest) Z-score. The strategy generates a significant average raw monthly return of 

6.96%, with a t-statistic of 2.89. 

 

The achievement of abnormal returns when portfolios are sorted by Z-score cannot be fully 

explained by traditional stock risk factors, nor by stock characteristics. The alphas of the long-

short straddle portfolios remain significant, irrespective of whether the Fama-French three-

factor model, the Carhart four-factor model, or the excess return of the zero-beta ATM S&P 

500 index systematic straddle factor by Coval and Shumway (2001) is applied as a benchmark. 

Double sorts confirm the predictive power of the Z-score and the returns hold for alternative 

definitions of the Z-score. Transaction costs do reduce the profits. Nevertheless, the profits are 

still significant when the effective-to-quoted spread ratio is at 25% or less, especially for less 

liquid options. Our results are important to option market traders, who should consider the 

information content of the CDS market when making investment decisions.  
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