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Abstract 

Merton model has provided a classic theoretical framework for forecasting credit spreads. This paper 
extends Merton model by introducing morphology factor of asset value volatility in the model, and 
conducts empirical studies on the effect of volatility morphology factor on credit spreads in China’s 
bond market both at the bond index level and the individual bond level, indicating that volatility 
morphology factor is economically important and is key in allowing the extended model to explain credit 
spreads. Furthermore, this paper analyzes the asymmetric influences of monetary policy both on credit 
spreads and volatility morphology factor, and points out that the responses of credit spreads and asset 
volatility morphology to the impacts of monetary policy is consistent in the capital-strapped 
environments. To this end, monetary policy and liquidity, which are two factors that have been ignored 
by classic Merton model but proved to have significant influences on credit spreads, play a role in 
influencing credit spreads by changing the volatility morphology of asset value. Since volatility 
morphology can reflect the change of investors’ expectation on the asset’s default probability, the 
argument mentioned in the credit-spread puzzle that the fundamentals related to bond defaults cannot 
explain credit spreads needs to be reexamined.  
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1.  Introduction 

Credit spread is the difference in yield between a risk-free bond and another bond of the same 

maturity but higher credit risk, such as a corporate bond. Having a thorough understanding of 

credit spreads is crucial to a financial practitioner. On the micro level, credit spreads embody 

the perceived default risk of a specific corporation. Whereas on the macro level, credit spread 

index reflects the systematic risk of the overall economy.  

Numerous studies have analyzed and examined the determinants of credit spreads either 

theoretically or empirically. Most theoretical models fall into two categories. The first is 

structural model. This kind of model shows that on the brink of insolvency, the owner of an 

enterprise will choose to default. Therefore, probability of default is determined by the 

difference between bond price and equity value. Based on this idea, Merton (1974) builds 

Merton model under the assumption that the asset price series follows an Itô process and 

consequently expresses the value of a bond as the value of a corresponding risk-free bond minus 

that of a put option. He calculates the theoretical bond value and credit spread by means of the 

Black-Scholes Option Pricing Model (1973). Afterwards, many studies have made a series of 

modifications and revisions to classical Merton model.  

Black and Cox (1976) relax the assumption that default would only occur on the maturity 

date of bonds and indicate that default would be triggered if the asset value fell below a certain 

threshold. Anderson and Sundaresan (1996) build a game model and come to a conclusion that 

even if asset value falls below the perceived trigger point, a bond issuer may not declare default 

immediately as timing is determined by a game process between shareholders and creditors, 

which will considerably increase the risk premium level. Mella-Barral and Perraudin (1997) 

follow this idea and obtain the analytical solution to bond prices. The work of Kim et al. (1993), 

Shimko et al. (1993) and Longstaff and Schwartz (1995) relax the assumption of a flat yield 

curve in Merton model, and assume that interest rates follow a mean-reverting CIR model or 



Vasicek model. Since Merton model assumes that asset price is continuous, when the asset price 

is far from the default boundary, the default probability and credit spread are almost zero, which 

is inconsistent with market practice. To account for this, Zhou (2001) uses a Poisson process to 

describe the abrupt change of enterprise value and simulates the credit spreads via the Monte 

Carlo method. 

  The second kind of theoretical models is reduce-formed model. Contrary to structural models, 

reduce-formed models regard default probability as an exogenous variable and indicate that 

default probability depends on credit rating agencies or default acts like a completely random 

event. Therefore, default is solely determined by the stochastic process it follows and its 

corresponding intensity. Jarrow and Turnbull (1995) construct the process of default intensity 

and use bond market data to calculate the parameters of the process. The default probability in 

the model no longer depend on the financial data. This method serves as the cornerstone for 

constructing default intensity and has been adopted and modified by many subsequent studies. 

For instance, Lando (1998) changes the intensity from a constant to a random variable. The 

radiation model proposed by Duffie and Kan (1996) provides a method to calculate default 

probability under the stochastic intensity model. Some scholars combine the above two kinds 

of credit spread models and create the Hybrid Model. Duffie (2001) and Giesecke (2001) have 

made contributions to this field.  

With the theoretical studies well under way, volumes of empirical studies have been 

conducted regarding to these models, among which literature examining structural models far 

outnumber that of reduce-formed models, as structural models have clear economic 

interpretations. One of the earliest empirical research in this field is that of Jones et al. (1984). 

It has empirically examined the difference between credit spreads derived from Merton model 

and that from the bond market data. Afterwards, the subsequent empirical studies generally 

follow the idea and have considered non-credit factors such as taxation, liquidity, and 



macroeconomic factors on credit spreads. Elton (2001) shows that credit spreads consist of risk 

premium, tax difference and expected default loss, among which risk premium carries the most 

weight, followed by tax difference, and expected default loss the last. Delianedis and Geske 

(2001) demonstrate that expected default loss only has an explanatory power of about 20% for 

credit spreads. They also point out the negative correlation between credit spreads and liquidity 

and the positive correlation between credit spreads and stock price volatility. Huang and Kong 

(2003) show that stock index, leading economic indicators, synchronous indices, and factors 

from Fama-French Model together could explain 40%-70% of the change in the credit spreads 

of corporate bonds. Furthermore, they perform tests on several classic structural models and 

conclude that the default expectation could explain no more than 20% of credit spreads.  

Except for the above literature focusing on the U.S. bond market, a growing empirical studies 

explore credit spreads in other countries. These include the studies by Hattori et al. (2001), 

Batten et al. (2003) and Ohyama et al. (2007) on the Japanese bond market, the studies by Boss 

and Scheicher (2002), Van Landschoot and Astrid (2004) on the European bond market, and 

the studies by Wang et al. (2012), Fang et al. (2013) and Gao and Zou (2015) on China’s bond 

market. In general, prior studies agree that fundamental factors related to default probabilities 

proposed by the traditional theoretical models have a very little explanatory power for credit 

spreads, while non-credit factors such as liquidity and monetary policy prove to perform much 

better. This creates a phenomenon described by Amato (2003) as the credit spread puzzle. 

Some studies have provided explanations for the credit spread puzzle. For instance, Abramov 

et al. (2004) points out that investors’ attitudes towards default risk vary with their preference 

of bonds with different credit quality. Accordingly, explanatory power of default risk in bonds 

with low credit grades is much higher than that of bonds with high credit ratings. Moreover, 

Amato (2005) proposes that the insufficient explanatory power of default risk on credit spread 

might be attributed to the negative skewness of the yield distribution and the difficulty in 



diversifying credit risks. Feldhütter and Schaefer (2018) indicate that the distribution of the 

historical default rate is skewed, meaning that the observed historical default rate is likely to be 

below the ex-ante default probability, so when testing a structural model that is calibrated to the 

historical default rate, predictions of the spread are likely to appear too low relative to the actual 

spread. According to Bai et al. (2020), the large market price of risk brought by securities that 

have significant exposure to downside tail risk imply that structural models of default are 

misspecified, and thus provide explanation for why these models significantly underestimate 

credit spreads. However, many of these explanations haven’t derived from the credit risk model 

itself and offer little insights in the fundamental issue which underlies the conflicts, that is the 

incongruence between theories and empirical evidence related to credit spreads. More 

meaningful work should be conducted on the reasons behind the inefficiency of Merton model 

and increase its explanatory power by expanding and modifying the model. 

In this paper, we first expand classic Merton model by using Asymmetric Exponential Power 

Distribution (AEPD) to introduce morphology factor of asset value volatility in the model. 

Serval numerical simulations help us show the effect of asset volatility morphology on credit 

spreads. We then find empirical supports to the extended Merton model by testing the 

explanatory power of the factors in the extended Merton model, especially the newly added 

volatility morphology factor, for credit spreads. By analyzing the expected default probability 

of investors implied in the volatility morphology factor, we further explore how monetary 

policy and liquidity, which are two non-credit factors excluded in classic Merton model, still 

associate with default risk when they influence credit spreads, and attempt to answer why 

fundamentals related to default risk have failed in explaining credit spreads. 

2.  The expanded Merton model 

Classic Merton model and its various expanded structural models believe that risk-free rate, 

leverage ratio and asset price volatility are the main factors influencing the probability of default. 



In terms of asset price volatility, classic Merton framework suggests that a higher volatility rate 

would widen credit spreads. But the real story is that volatility by itself does not necessarily 

increase the probability of default, and there is an asymmetric response of default probability 

to the positive and negative changes of asset price. Specifically, when the market value of a 

firm occurs positive fluctuation in consequence of good news, the probability of default would 

not increase. To acquire a better understanding of the mechanism by which asset price volatility 

influences credit spreads, we develop an expanded Merton model.  

We argue that volatility factor includes not only volatility rate but also volatility morphology. 

Classic Merton model only covers volatility rate which has been shown by prior empirical 

studies to have little explanatory power for credit spreads. However, it doesn’t mean that asset 

volatility morphology lacks explanatory power as well. As a matter of fact, volatility 

morphology provides far richer information than volatility itself. Let’s take a simple numerical 

example, suppose that for one company, 9 out of 10 fluctuations in asset price are 1%, and only 

one is -9%, and for another company, asset price changes by -1% on 9 of these 10 fluctuations 

and by 9% on 1 fluctuation. Although both companies’ volatility rates have a mean of zero and 

the same variance, the morphology of volatility is however drastically different. The volatility 

morphology factor is important in that changes in volatility morphology often stem from 

changes in monetary policy, liquidity conditions, and other fundamental factors. fluctuates by -

1% on 9 of these 10 occasions and by 9% on 1 occasion. Although both have a mean of zero 

and the same variance, the pattern of volatility is however drastically different. The volatility 

pattern is important in that changes in volatility patterns often stem from changes in monetary 

policy, liquidity conditions, and other factors. Thus, the impact of these important factors on 

credit spreads might as well be incorporated in volatility morphology factor. In this paper, we 

expand classic Merton model based on that.  

Merton (1974) believes that longing a corporate bond is equal to longing a risk-free bond 



while selling a put option on the issuer’s assets. Let V be the enterprise value of a certain 

company at the beginning time t, and F be the face amount of all debt outstanding. Thus, the 

credit spread at time T is 

                (1) 

                         (2) 

                             (3) 

where h=Fe-r(T-t)/V represents the leverage ratio when the risk-free rate is r. σv denotes the 

volatility rate.  

We assume that enterprise value follows a random work with drift as follows: 

                         (4) 

where dz follows a standard Wiener process, z has a normal distribution, α denotes the return 

on assets and C represents interest income. Thus αV-C is the net cash inflow per unit of asset. 

In the case of a zero-coupon bond, C approaches zero and therefore 

                          (5) 

  We modify the basic equation of enterprise value change by letting dz follows a random 

process comforting a AEPD distribution. A AEPD distribution is proposed by Zhu and Zinde 

Walsh (2009) and is short for asymmetric exponential power distribution. This distribution 

could better describe financial time series’ data characteristics of heavy tails and negative 

skewness (Wu et al., 2016), and the asymmetry of distribution. A AEPD distribution has been 

applied in asset pricing. Wu (2016) constructs a stock price movement model using a AEPD 

distribution. Tian et al. (2015) apply this distribution to the pricing of European call options in 

the risk-neutral approach and empirically examine the implied option prices of convertible 

bonds. These studies show that a AEPD distribution effectively improve the fitting ability of 
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asset pricing models to real financial time series data, and increase the forecasting level of 

models. As pricing of the underlying put is the essence of Merton framework, we would make 

some modifications to the function form of a AEPD distribution and then use it to optimize 

classical Merton model. A AEPD density function proposed by Zhu and Zinde-Walsh (2009) 

has the following form: 

       (6) 

where µ∈R, 𝜎>0, α∈(0, 1), p1>0, p2>0. µ and 𝜎 represent location and scale respectively. 

α is the skewness parameter, reflecting whether the tail is left- or right-skewed. p1 and p2 are 

two parameters reflecting the thickness of left and right tail respectively. α*	and KEP(p) are 

defined as 

                        (7) 

                           (8) 

where Γ is the Gamma function and analytically .  

  Compared to a normal distribution, a AEPD distribution has more parameters to show the 

characteristics such as skewness, kurtosis and thick tail. The expectation and variance of a 

AEPD distribution are 

                   (9) 
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(10) 

where B≡αKEP(p1)+(1-α)KEP(p2). 

We can further get the standardized form of a AEPD distribution. Suppose that random 

variable X has a standard AEPD distribution with parameter β=(α , p1 , p2 , µ , σ ). The 

standardized random variable z is 

(11) 

When parameter β = (α=0.5, p1=2, p2=2, µ=0, σ=1), z follows a standard normal distribution. 

Furthermore, Jacod and Shiryayev (1993) have shown that for any time t>0, there exists a 

corresponding noncontinuous independent increment process Y(t)= ∑ Yt. Yi (i=1, 2, …, n) are 

random variables following an AEPD distribution. Subsequently, let ϕ(u) denotes the logarithm 

characteristic function of Yi and there exists a corresponding martingale process:  

                             (12) 

Let u=σ/i 2, the martingale would be . Combining this with (V0 

and Vt represent asset value at the beginning time and time t, µ represents discount rate), we can 

get the expression as follows: 

                          (13) 
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As our AEPD distribution has been standardized, the σ parameter is always equal to 1. To simplify our 
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Taking logarithms of both sides of equation (13), we get 

              (14) 

where α is return. α in conjunction with p1	and p2 from equation (11) decide the shape of the 

standard AEPD distribution. In order to analyze the effects of the skewness and kurtosis of 

volatility morphology, we choose not to assign a value to α beforehand but assign the values to 

p1	and p2 and calculate the value of α based on equation (9). Skewness and kurtosis are the 

only two differences between a AEPD distribution and a normal distribution. 

  Let Yi follows the standard AEPD distribution as shown in equation (11). When α=0.5, p1=2, 

p2 =2, the AEPD distribution degenerates into a standard normal distribution (0, 1). The 

comparison between the AEPD distribution and the normal distribution is shown in Fig. 1 below.  

 
Fig. 1.  The AEPD distribution and normal distribution when α=0.5, p1=2, p2=2 

At this time, the logarithmic eigenfunction ϕ(σ
i
) equals to 1

2
σ2. For asset price we have 

                 (15) 

We could calculate the value of corporate debt using the risk neutral approach as follows: 

                         (16) 

In other words, if the company remains solvent, bond investors will receive the face value in 

full; otherwise they will get the market value of the issuer’s assets. The yield and credit spread 
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can be expressed as 

                            (17) 

                               (18) 

Based on our expended Merton model, equation (18) can be further discretized to 

CS = CS (h, σv, (T - t),	p1, p2, α )                     (19) 

Compared to classical Merton framework, credit spreads under the Merton-AEPD model 

takes a more complicated form and there is usually no explicit solution for equation (19). Our 

study takes the numerical method to analyze the underlying relationship between the parameters 

of the Merton-AEPD model and credit spreads. Fig. 2 shows two typical morphologies (right-

skewed and left-skewed) of the Merton-AEPD models under different parameters.  

 
Fig. 2.  The morphology of the AEPD distribution under different parameters. 

As for a AEPD distribution, α is the most important parameter since it decides the skewed 

direction the distribution is. Besides, p1 and p2 also play a rule in that regard. As p2 gets 

larger, the characteristics of the right kurtosis and heavy tail of the AEPD distribution are 

quite obvious, which will also cause the distribution to skew to right, and theoretically 

reduce the credit spread. The influence of p1 on credit spreads is complex. On one hand, 

larger p1	makes the distribution skew to left, increasing the credit spread. On other hand, 

when p1  becomes larger, the distribution’s right tail gets heavier and , making the 
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distribution more positively skewed. There will be lower probability of extreme loss and 

corresponding credit spread. That is why we cannot come to a conclusion regarding the 

effect of p1 on credit spreads.  

To further examine whether α and p2 significantly affect credit spreads, we set different 

assumptions about term to maturity T, leverage ratio L, risk-free rate r, and α, p1,  p2 for 

volatility morphology and perform various numerical simulations. When regressing credit 

spread on α and p2, both coefficients are negative and statistically significant. In other words, 

as the value of α or p2 gets larger, the credit spread gets smaller. This is consistent with our 

argument that as negative skewness implies constant negative earnings, which is detrimental to 

investors’ confidence and will impair the company’s financing ability. Therefore, our Merton-

AEPD model is effective in recognizing volatility morphology for which in the subsequent 

empirical researches we would use α and p2	as agent variables.   

3.  Empirical analysis 

We have pointed out in the previous section that volatility rate alone could not sufficiently 

describe the uncertainty regarding firm value, while volatility morphology provides far richer 

information. Based on the numerical simulations, credit spreads are negatively correlated with 

both α and p2 under the Merton-AEPD model. Next, we conduct empirical studies on the effect 

of volatility morphology factor on credit spreads in China’s bond market both at the bond index 

level and the individual bond level. 

3.1.  Empirical research at the bond index level 

We first calculate the differences between ChinaBond Financial Corporate Bond Yield Curve 

(AAA/AA+/AA/AA-) and the yield of corresponding same-term government bonds 3. We then 

take the arithmetic mean so as to obtain the monthly credit spreads series. Due to the differences 

                                            
3 Term to maturity include 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 15 years. 



in the starting point of the disclosures, length of the data series varies as shown in Table 1. As 

the credit spread series is non-stationary, we decide to take the natural logarithm of the original 

series and the new series have passed tests for stationarity. Besides, we estimate returns, 

standard deviations and volatility-pattern parameters from the CSI300 Index series based on 

classic Merton model and the Merton-AEPD model. As shown by Fig. 3 and Fig. 4, classical 

Merton model and our Merton-AEPD model provide nearly the same results of estimating yield 

and volatility rate.  

Table 1.  
Sample time spans for credit spreads under different credit rating levels. 

AAA Rating AA+ Rating AA Rating AA- Rating 
2006.3-2019.12 2007.10-2019.12 2007.5-2019.12 2008.1-2019.12 

 
Fig. 3.  Yield estimates based on classical Merton model and the Merton-AEPD model. 

 
Fig 4.  Volatility rate estimates based on classical Merton model and the Merton-AEPD model.



Subsequently, we apply the vector auto regression (VAR), to examine the effects of yield, volatility 

rate, and volatility morphology on credit spreads. To ensure the legitimacy of our regression, we 

have performed statistical tests on all the above data series and all of them are stationary. Table 2 

exhibits results of the Granger causality tests for yield and credit spreads, while Fig. 5 reflects the 

impulse response of the corresponding credit spreads to yield. The results suggest that yield has a 

negative effect on credit spreads, which is consistent with classic Merton model. However, overall 

significance level of the test results is limited. For instance, the AA+ and AA- rated corporate bonds 

do not pass the Granger test. Table 3 presents results of Granger causality test for volatility rate and 

credit spreads, while Figure 6 shows the corresponding impulse response of credit spreads to 

volatility rate. The statistical tests suggest that volatility rate does not Granger cause credit spreads 

and the sign of the regression coefficient is inconsistent with that implied by classic Merton model. 

In other words, when volatility rate rises the credit spreads would fall. There are two possible 

explanations for this. First, favorable information regarding to the overall economy may make stock 

indexes more volatile, while narrow the credit spreads. Second, the CSI300 stock index could not be 

a substitute for bond yield indices. Overall, explanatory power of yield and volatility rate for credit 

spreads in classic Merton framework is limited. 

Table 2. 
Granger test for yield and credit spreads. 

Null hypothesis F-test 
Yield does not Granger cause credit spread for AAA rated bonds  5.37** 
Yield does not Granger cause credit spread for AA+ rated bonds 0.07 
Yield does not Granger cause credit spread for AA rated bonds 2.93* 
Yield does not Granger cause credit spread for AA- rated bonds 0.13 

Note: ***, **, * indicate the significance level of 1%, 5%, and 10% respectively. 

Table 3. 
Granger test for volatility rate and credit spreads. 

Null hypothesis F-test 
Volatility rate does not Granger cause credit spread for AAA rated bonds  0.73 
Volatility rate does not Granger cause credit spread for AA+ rated bonds 0.51 
Volatility rate does not Granger cause credit spread for AA rated bonds 1.04 
Volatility rate does not Granger cause credit spread for AA- rated bonds 0.86 

Note: ***, **, * indicate the significance level of 1%, 5%, and 10% respectively. 



c  
Fig. 5.  Impulse response of credit spread to yield. 

 
Fig. 6.  Impulse response of credit spread to volatility rate. 

Volatility morphology are described by α,	 p1, p2	from the AEPD distribution, among which α 

and p2	are stably correlated with credit spreads in the theoretical model. The 𝛼 series is stationary 

with a test statistic of -4.35 in the ADF test, which is significant at the 1% level. However, the 

p2	series is non-stationary. We decide to use −𝛼 solely as a proxy for volatility morphology 4. The 

results of VAR model are exhibited in Table 4 and Fig. 7. Table 4 indicates that volatility morphology 

Granger causes credit spreads. The Fig. 7 shows that credit spread affects volatility morphology 

                                            
4 In theory, as α enlarges, credit spreads decrease. In order to conveniently describe the results, we use –α instead 

of α in the VAR model to make sure volatility morphology and credit spread change in the same direction.  



positively. That is if the volatility distribution gets more negatively skewed, the credit spreads widen. 

In conclusion, credit spread has a relatively stable positive response to the volatility morphology 

under the Merton-AEPD model. We can say that compared to yield and volatility rate, volatility 

morphology provides richer information on the changes in a company’s value and have stronger 

predictive power for credit spreads.  

Table 4.  
Granger test for volatility morphology and credit spreads. 

Null hypothesis F-test 
Volatility morphology does not Granger cause credit spread for AAA rated bonds  15.16*** 
Volatility morphology does not Granger cause credit spread for AA+ rated bonds 4.35*** 
Volatility morphology does not Granger cause credit spread for AA rated bonds 9.52*** 
Volatility morphology does not Granger cause credit spread for AA- rated bonds 2.72** 

Note: ***, **, * indicate the significance level of 1%, 5%, and 10% respectively. 

  
Fig. 7.  Impulse response of credit spread to volatility morphology. 

3.2.  Empirical research at the individual bond level 

To further verify the conclusion above, we also perform empirical analysis based on the more 

micro bond level data. Samples of individual bond have more variation. Besides, volatility 

morphology of a company’s equity and its credit spread have one-to-one correlation. Our research 

only involves companies that issue both stocks and bonds at the same time. Moreover, many 

companies have serval bonds during the same period. In order to avoid the excessive influence of a 

single company on the overall sample, we only use the bond with largest issuance of a company as 



our research sample 5. This leave us with 837 bonds issued before December 2019.  

We use least square regression (OLS) to examine the impact of quarterly yield, volatility rate and 

volatility morphology on credit spread. The explained variable, credit spread, is calculated by taking 

the difference between the quarter-end ChinaBond yield of focal bond and the yield of the same-

term treasury bond. As for the explanatory variables, yield and volatility rate are obtained from the 

quarterly stock trading data. The volatility morphology factors -α and p2 is estimated under the 

Merton-AEPD model. Furthermore, based on existing literatures related to Merton model, we also 

control the quarterly slope of yield curve 6, leverage, firm fixed effect and quarter fixed effect in the 

regression model. As for the slope of the yield curve, we calculate the quarterly mean of spot yield 

and then use Nelson-Siegel (1987) model to obtain the yield curve slope. The model is 

    (20) 

where R(t, m) is the bond yield, m represents term to maturity, coefficient θ1(t) is the asymptote 

of the long-term yield, and coefficient θ2(t) measures how steep the yield curve is. Generally,  θ2(t) 

has a negative value, and as the absolute value of θ2(t) gets larger, the spot curve gets steeper. 

coefficient θ3(t) describes the curvature while τ describes the speed and degree that the long-term 

yield converges to its asymptote. As τ	gets larger, the measure has more information about forward 

rate. In this case, we give τ	a lower bond of 1 to focus more on the short-term rate.  

By the time December 2019, there are 6,948 observations. The main reason for choosing 

quarterly data is that the volatility rate of individual stock is much larger than that of a stock index. 

We may not obtain robust estimators for the model parameters using monthly data or data of a higher 

frequency. Besides, the asset-liability ratio is also disclosed quarterly. 

The empirical results are shown in Table 5. The regression coefficient of stock return is negative, 

                                            
5 If there were two bonds have the same face amount, we keep the one with longer term to maturity so as to have 

more data points. 
6 The form of term structure has rich economic meaning. Its steepness often represents investors’ expectation of 

economic growth, inflation and so on (Hardouvelis, 1988; Minshkin, 1990). 
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but it is not significant. In fact, in the above empirical study at the bond index level, the effect of 

yield on credit spread is also relatively limited, and yield does not Granger cause credit spread for 

AA+ and AA- rated corporate bond. In addition, the regression coefficient of stock volatility is 

significantly negative, that is, when asset volatility rises, credit spread narrows, which is consistent 

with the empirical study at the bond index level and can’t be explained by classical Merton model. 

Table 5. 
Regression Results for various factors on credit spreads.  

 (1) (2) 
Stock return -0.05 -0.02 
 (0.07) (0.06) 
Stock volatility -0.28*** -2.03*** 
 (0.09) (0.10) 
Volatility morphology: p2 0.11***  
 (0.46)  
Volatility morphology: 𝜶 0.32**  
 (0.15)  
Slope of yield curve -0.23** -0.30** 
 (0.19) (0.18) 
Leverage ratio 0.05*** 0.05*** 
 (0.04) (0.04) 
Firm fixed effect Yes Yes 
Quarter fixed effect Yes Yes 
Constant -0.19 -0.24 
 (0.12) (0.13) 
Observation 6,948 6,948 
R-square 0.53 0.54 

Note: t-values are reported in parentheses under the estimation coefficient. ***, **, * indicate the significance level of 1%, 5%, and 
10% respectively.  

Regression coefficients for both α  and p2  are significantly positive, indicating volatility 

morphology has strong explanatory power for credit spread, which is consistent with the theoretical 

implications of the Merton-AEPD distribution. The expanded Merton model improve classical 

Merton framework by depicting the volatility factor more accurately.  

4.  The Influences of monetary policy and liquidity under the expanded Merton model 

As summarized in the previous study on the existing research, the factors that affect credit spreads 

mainly include two categories. One is the fundamental factors related to the default probability 

defined by classic Merton model framework such as leverage ratio and asset volatility rate, which 



reflects investors’ comprehensive judgment on the possibility of bond default; The other is monetary 

policy, liquidity and other factors. Although a large number of empirical studies have revealed that 

other factors such as monetary policy and liquidity have a significantly higher explanatory power 

for credit spreads than fundamental factors (Driessen, 2005; Wu and Zhang, 2008), but they often 

attribute the influences of monetary policy and liquidity to their own characteristics, and completely 

separate these factors from the possibility of default. This paper believes that factors such as 

monetary policy and liquidity do not directly affect credit spreads, and some of their effects still play 

a role by affecting the possibility of default. For example, under the tightening monetary policy, the 

reduction in the supply of funds in the bond market will directly affect the credit spreads of bonds. 

However, if investors observe the constraints of the tightening policy on the operation of the 

enterprise and increase the fear of corporate default, it is also related to the probability of default. In 

fact, the reason why this paper emphasizes the importance of asset volatility morphology is that 

volatility morphology often contains the information of “investors’ expectation of default 

probability”, which is affected by changes in monetary policy, liquidity and other no-credit factors. 

Specifically, when the monetary environment is loose, companies tend to rely less on funds, and 

the marginal changes in monetary policy have less impact on business operations, and the impact is 

usually temporary. The return on asset may return to normal quickly, and investors’ expectations for 

defaults caused by monetary policy and liquidity are small. In a tightening environment, monetary 

policy shock is more likely to be transmitted to a company’s real operation activities. Therefore, the 

impact of monetary policy shock may be continuous, and investors’ expectations of the probability 

of default increase. Here is a simple example to further illustrate the relationship between the 

continuity of monetary policy’s influence and volatility morphology. For the sake of simplicity, the 

stock price is used to represent the enterprise value, assuming that the stock price return rate 

conforms to a normal distribution with a mean value of 0, and the total number of periods is 1300 

periods. When the shock comes, if the impact is continuous, it is assumed that the stock price return 



rate will drop to the position of the average value of -2 and continue to fluctuate (still consistent with 

the normal distribution). Conversely, if the impact is short-term, it is assumed that the stock price 

return will only fluctuate 300 periods at the position where the mean is -2, and the remaining 1000 

periods will still fluctuate at the position where the mean is 0. Fig. 8 shows the empirical distribution 

of returns under continuous and non-continuous impacts. Obviously, in the model with unsustainable 

impact, in addition to the decrease in the mean value, the empirical distribution of returns is 

obviously biased. It can be seen that volatility morphology that is neglected under the framework of 

classic Merton model will be shaped by changes in monetary policy and liquidity and partially 

mediate the influences of monetary policy and liquidity on credit spreads. If the idea is right, the 

argument of the credit spread puzzle that fundamental factors related to default cannot explain credit 

spreads will be weakened. 

 
Fig. 8.  Empirical distribution of returns under continuous and non-continuous impacts of monetary policy 

We next analyze the influence of monetary policy on credit spreads and various factors in the 

expanded Merton model under different funding conditions, and then test the theoretical analysis 

above. If the asymmetry of monetary policy shock does exist and is consistent with the extended 

Merton model, it means that the mechanism by which monetary policy influence credit spreads is 

mediated by volatility morphology to some extent.  



4.1.  The impact of monetary policy on credit spreads 

We first select the monthly average of the weighted interest rate of the seven-day repurchase in 

the interbank market from January 2002 to December 2019 as the proxy variable for monetary policy. 

The reasons are as follows. First, quantitative proxy variables such as loan growth and money supply 

have flaws in studying the bond market. Since both bonds and loans appear on the asset side of banks’ 

balance sheet, the rapid growth of loans often means the shrinking of banks’ allocation of bond assets, 

so the policy easing reflected by the loan growth rate sometimes represents the tightening of the 

bond market. At the same time, loan growth and money supply are to a certain extent the result of 

banks and residents’ asset allocation and capital expenditure choices, which may lag behind investors’ 

allocation of bonds. If using these variables as the proxy variables of monetary policy to study its 

impact on the bond market is quasi-inverted. In addition, these quantitative proxy variables are also 

endogenous and often deviate from real policy intentions. For example, although the growth rate of 

loans and M2 has declined in recent years, the monetary authorities have always been interested in 

guiding the decline in financing costs for policy purposes. Second, among the interest rate proxy 

variables, the inter-bank repo rate is the most representative. The inter-bank repurchase is the 

financial product with the largest transaction volume in substance and can most widely reflect the 

short-term cost of funds of financial institutions. Some scholars believe that the banks’ cost of funds 

can be assumed to be the average of the seven-day repo rate and the one-year fixed deposit 

benchmark rate. Compared with other deposit and loan benchmark interest rates, the repo rate is 

daily data, so it also has sufficient variation, and because of its active trading, it can quickly reflect 

the tightness of funds. Third, judging from the practice of monetary authorities, China is paying more 

and more attention to open market operations and the management of short-term interest rate 

corridors. In recent years, various monetary tools such as Medium-term Lending Facility (MLF), 

Standing Lending Facility (SLF), and Short-term Liquidity Operations (SLO) introduced by the 

central bank are designed to strengthen the management of short-term interest rates. In fact, scholars 



generally agree that the monetary authority’s control lies in short-term interest rates, and short-term 

interest rates should be used to guide changes of long-term interest rates. Of course, because this 

paper studies the bond market, the bond yield cannot be used as a proxy variable for monetary policy, 

and the seven-day repurchase that has high degree of marketization and logical causality with the 

bond market becomes the ideal choice.  

We use the same monthly credit spread data in the above part of 3.1 to examine the impact of 

monetary policy on credit spreads based on the VAR model. The empirical results are shown in Table 

6 and Fig. 7. It can be seen from Table 6 that monetary policy is the Granger reason for the credit 

spreads under each credit ratings. Fig. 7 shows that the impulse response of credit spreads to 

monetary policy shocks is positive. 

Table 6.  
Granger test for monetary policy and credit spreads. 

Null hypothesis F-test 
Monetary policy does not Granger cause credit spread for AAA rated bonds 4.68** 
Monetary policy does not Granger cause credit spread for AA+ rated bonds 4.23** 
Monetary policy does not Granger cause credit spread for AA rated bonds 1.97*** 
Monetary policy does not Granger cause credit spread for AA- rated bonds 5.79** 

Note: ***, **, and * represent the significance levels of 1%, 5%, and 10%, respectively. 

 

Fig. 9.  The impulse response of credit spreads to monetary policy. 

In order to test whether the impact of monetary policy has an asymmetric effect on credit spreads, 

this paper uses a smooth transition vector auto-regression (STVAR) for analysis. The lag order of 



the model is consistent with the previous VAR models, and the lag order of the transition variables 

is 1 order. First, we iterate the threshold value and smoothing coefficient of the four rated bonds 

separately to obtain four two-dimensional graphs of the likelihood function LR p-value (as shown in 

Figure 10-13), and then select the transition available for tests according to the two-dimensional 

graphs. It is not difficult to find that for the four groups of models, large areas of LR p-value less 

than 0.1 appear on both sides of the threshold from 3 to 4, so the range of available transition variable 

is relatively wide. In this paper, two cases of [loose (<2.5), tight (>4.5)] and [loose (<3), tight (>5)] 

are selected as control groups. The selection criterion of the smoothing coefficient is to make the LR 

p-value as small as possible under the existing parameters. 

 
Fig. 10.  Model parameter settings and LR p-value for AAA rated bonds. 

 
Fig. 11.  Model parameter settings and LR p-value for AA+ rated bonds. 



 
Fig. 12.  Model parameter settings and LR p-value for AA rated bonds.    

 
Fig. 13.  Model parameter settings and LR p-value for AA- rated bonds. 

Fig. 14 reflects the impulse response of credit spreads to the impact of monetary policy under the 

conditions of [loose (<2.5), tight (>4.5)]. And Fig. 15 reflects the impulse response of credit spreads 

to the impact of monetary policy under the conditions of [loose (<3), tight (>5)]. The results show 

that the impact of monetary policy has a significant asymmetric effect on credit spreads, that is, in a 

tight liquidity environment, credit spreads expand more, and in a loose liquidity environment, credit 

spreads expand less. This is basically consistent with the analysis of the theoretical part. 

4.2.  The impact of monetary policy on the factors of the expended Merton model 

We further examine how monetary policy affects factors such as yield, volatility rate and volatility 

morphology that determine credit spreads in the Merton-AEPD model. STVAR models are 



performed using the seven-day repo rate and the yield, volatility rate and volatility morphology 

previously estimated based on the CSI300 index sequence. We iterate the threshold and smoothing 

coefficient for the yield, volatility rate and volatility morphology respectively to obtain three two-

dimensional graphs of the likelihood function LR p-value. As can be seen from Figures 16-18, in the 

model about yield and seven-day repo rate, the threshold has a larger choice, while in the other two 

models, the area where the threshold can pass the non-linear test is relatively narrow. Considering 

the above situation comprehensively, the three models are compared in Table 7. 

 

 
Fig. 14.  Impulse response of credit spreads to monetary policy under the conditions of [loose (<3), tight (>5)]. 



 

Fig. 15.  Impulse response of credit spreads to monetary policy under the conditions of [loose (<3), tight (>4.5)]. 

 
Fig. 16.  Parameter setting and LR p-value for the yield model. 



 
Fig. 17.  Parameter setting and LR p-value for the volatility rate model. 

 
Fig. 18.  Parameter setting and LR p-value for the volatility morphology model. 

Table 7.  
Model comparison. 

Relationship STVAR model settings Whether there is 
asymmetry Explanation 

Yield and monetary 
policy 

The transition variable lags by 
one period;  
the threshold value <3% >5%. 

Asymmetry 
In tight liquidity conditions, 
yields suffer a greater negative 
impact. 

Volatility rate and 
monetary policy 

The transition variable lags by 
one period; 
the threshold value <4% >5%. 

No asymmetry — 

Volatility morphology 
and monetary policy 

The transition variable lags by 
one period;  
the threshold value <4% >5%. 

Asymmetry 
In tight liquidity conditions, 
yields suffer a smaller negative 
impact. 

Fig. 19 shows that yield shows asymmetry under the impact of monetary policy. When the 

liquidity is loose, the impact of monetary policy shock on yield is small, and when the liquidity is 

tight, the impact of monetary policy shock is greater. As can be seen from Fig. 21, the impact of 



monetary policy shock on volatility morphology also has obvious asymmetry, that is, monetary 

policy shifts volatility morphology to the right, but in a tight liquidity environment, the magnitude 

of the right skew will be smaller. The above empirical results are very consistent with the theoretical 

analysis corresponding to Fig. 8. When a monetary policy shock occurs, a decline in yield will 

definitely cause volatility morphology to be right-biased, and the continuity of the influence 

determines the magnitude of the right-bias. In a tight liquidity environment, volatility morphology 

has a smaller right skew, indicating that the impact of monetary policy is more sustainable. 

 
Fig. 19.  Impulse response of yield to monetary policy. 

 
Fig. 20.  Impulse response of volatility rate to monetary policy. 



 
Fig. 21.  Impulse response of volatility morphology to monetary policy. 

Combining the research on the relationship between volatility morphology and credit spreads in 

the previous section and on the asymmetric impact of monetary policy shock on credit spreads, we 

indicate that volatility morphology plays an important mediating role in the transmission mechanism 

of the asymmetric effects of monetary policy on credit spreads. To further explain, the changes in 

credit spreads brought about by monetary policy and liquidity factors can be explained by the 

volatility morphology emphasized by our expanded Merton model. Since asset volatility 

morphology can reflect the changes in investors’ expectation of default under the impacts of 

monetary policy and liquidity, the influences monetary policy and liquidity cannot be completely 

stripped from the default factors as the previous literature believes. 

In addition, the empirical results in Fig. 21 also point out that under the impact of monetary policy, 

volatility rate tends to expand, but there is no significant asymmetry in a loose or tight liquidity 

environment. It should be noted that although the empirical study in the previous section found that 

rising volatility rate will reduce credit spreads, it cannot be asserted that monetary policy shock 

narrowed credit spreads by increasing volatility. This is because there are many reasons for the 

increase in volatility. The increase in volatility caused by the tight liquidity is often negative, and 

logically, credit spreads should not decrease. 



5.  Concluding remarks  

This paper expands classic Merton model by introducing morphology factor of asset value 

volatility, and uses empirical studies to reveal the explanatory power of the extended mode. To some 

extent, the extended Merton model deals with the inconsistency between the structural approach to 

credit risk and the empirical evidences. Further studies show that no-credit factors such as monetary 

policy and liquidity, which have been ignored by classic Merton model but proved to hold significant 

explanatory power on credit spreads, play a role in influencing credit spreads by changing the 

volatility morphology of asset value, could be incorporated in asset volatility morphology. This paper 

concludes that it may be inappropriate to simply refer the phenomenon that the factors related to 

default probabilities proposed by the previous theoretical models fail to explain credit spreads as the 

credit spread puzzle.  

We argue that there are two reasons why classical Merton model underestimate credit spreads. 

First, existing Merton framework ignores some fundamental factors. Especially when the neglected 

factors are driven by non-credit factors such as monetary policy and liquidity and reflect investors’ 

fears of default, the model spreads become lower. The empirical results based on STVAR approach 

support this point. Second, the explanatory power of theoretical models will be limited if we only 

consider the issuers’ real state of operation while regards other factors to be unrelated to default risks. 

In fact, as this paper demonstrates, changes in credit spreads resulting from shocks of monetary 

policy and liquidity may trace back to default risks. Non-credit factors may not be reflected in the 

operation state of companies directly, but they may be reflected in the expectations of investors. The 

change of asset volatility morphology under the monetary policy shock provides evidence to our 

arguments 

By unraveling the credit spread puzzle, our paper also shed new lights on the understanding of 

China’s bond market. In essence, credit spread is the capitalization of the default probability. Because 

the rigid payment phenomena exist at times, many financial practitioners and scholars believe that 



China’s bond market is still immature and the credit spreads are more of a function of liquidity and 

investor psychology. Accordingly, the credit spread puzzle is often cited as evidence of the 

inefficiency and irrationality of China’s bond market. Based on the research context of China’s bond 

market, our paper provides estimates of default expectation risk premium implied in asset volatility 

morphology and document that it can be a key driver of credit spreads, which means that China’s 

bond market has a degree of pricing capability and allocation efficiency.  
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