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Abstract

This paper studies systemic risk in the Chinese debt market stemming from
inter-corporate loan guarantees using field data from Zhejiang Province. We
apply a weighted and directed network model to analyse the implications for
default contagion and systemic risk under different stress testing scenarios. The
empirical results indicate that the topology of the loan guarantee network is
close to a ‘scale-free’ structure, which is known to be robust against accidental
failures but vulnerable to coordinated attacks. Hence, the network is able to
cope with idiosyncratic shocks resulting from single company failures, but can
easily suffer from more widespread contagion if a group of systemically
important companies are hit by a targeted shock. We further demonstrate that
within our sample of small and medium-sized enterprise (SME) companies,
increasing leverage reduces network stability and exacerbates the effects of
contagion. More lenient bank lending policies increase the survival rate of
sample companies and thereby reduce the losses from default contagion.
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1. Introduction

Several textile manufacturers in the city of Shaoxing defaulted on their debt
payments in the wake of the global financial crisis in 2008. The resulting
domino effect eventually spread to the entire Zhejiang Province underscoring
the relevance of network effects for the overall impact of debtor default (Zhang,
2011; Wang and Yi, 2012). In this particular case, so-called loan guarantees
played an important role, i.e., the promise given by the guarantor to assume the
debt obligation of a borrower in case of default. These contractual commit-
ments are widely used in many countries to alleviate the borrowing constraints
facing small and medium-sized enterprises (SMEs) including China (EBCI,
2014). In this article, we are using unique field data from the city of Wenzhou in
Zhejiang Province to study risk contagion of company defaults within such a
loan guarantee network.
SMEs are often limited in their capacity to access bank credit due to

insufficient collateral, lack of credit history, and sometimes even an inadequate
professionalisation of the finance function. The information asymmetry that
exists between companies and financial institutions, in the absence of adequate
collateral, can explain negative responses to loan requests (Cusmano, 2012).
Many Chinese SMEs find themselves in this predicament and therefore use loan
guarantees as alternative means of accessing bank finance. Moreover, due to
the lack of government guarantee schemes, bilateral or multilateral loan
guarantees are commonly arranged among companies to support private
lending.
Figure 1 depicts a typical loan guarantee structure between two companies A

and B, with B providing the loan guarantee to A so that the latter can access a
bank loan. The graph also highlights the potential paths for loss propagation in
case of default. It is well documented that many Chinese SMEs are tied up in
such loan guarantee schemes resulting in a highly interconnected network
(Zhang et al., 2012; Niu et al., 2017). Each linkage forms a path for shock
propagation among companies in case of default. High connectivity entails the
potential of cascading failure that can lead to the breakdown of the entire loan
guarantee network (Allen et al., 2010). Network disintegration ultimately
represents a systemic risk for the banking sector as a whole which can also spill
over into the real economy. Hence, central banks and financial oversight bodies
have the task of addressing this issue at the source.
In this article, we apply network analysis to analyse the risk implication of

default. We model inter-corporate loan guarantees using a weighted directed
network,1 based on which stress testing is performed to evaluate network

1In a weighted directed network, edges are associated with directions and weights. For
the loan guarantee network, the direction and weight of each arrow represent the
corresponding direction of loss transmission and the size of the contingent loan
guarantee liability, respectively.
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stability under various scenarios. Our findings suggest that the topology of the
loan guarantee network is close to a scale-free network structure, in which there
exists a small number of nodes acting as ‘hubs’, while the majority are at the
‘periphery’. As shown by Barab�asi (2009), the scale-free property implies that it
is robust in case of random attacks, but fragile when it comes to targeted
attacks aimed at highly interconnected nodes. Our stress testing analysis
confirms the robustness to idiosyncratic shocks and the fragility when a group
of companies are hit, especially when it affects those with high centrality. As an
extension to Modigliani and Miller (1958), we find that rising debt levels not
only increase the likelihood of financial distress of individual companies, they
also augment systemic risk in the network. Finally, our simulation results
demonstrate that the provision of credit support during a crisis period is a vital
‘safety net’ that helps more companies to survive and also reduces the aggregate
losses caused by default contagion.
The remainder of this paper is organised as follows. Sections 2 and 3

respectively describe the related literature and dataset. Section 4 presents the
analytical construction of the loan guarantee network. Section 5 introduces the
network topology and Section 6 the construction of debt contagion for the
subsequent simulation analysis. Section 7 discusses the results of the stress
testing analysis and Section 8 concludes.

2. Related literature

After the 2008 global financial crisis and the subsequent European sovereign
debt crisis in 2011, the application of network theory to finance has attracted
more attention than ever before. A series of theoretical contributions have

Figure 1 Example of a simple loan guarantee between companies A and B (black lines) and the

potential loss propagation paths in case of default (dash lines).
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focused on the relationship between the structural properties of financial
networks and their resilience to systemic risk. A number of earlier works are
still milestones in the field. Diamond and Dybvig (1983) study liquidity
shortage in interbank deposits and claim that cross-holding of deposits helps to
share liquidity risk across different banks. In the case of a bank default, cross-
holdings will, however, turn into the most likely channels for loss propagation.
Similar insights are discussed in Bhattacharya and Gale (1985) who examine
the effect of liquidity shocks on interbank borrowing and lending.
The seminal work of Allen and Gale (2000) analyses contagion in a simplified

four-bank network to confirm that the stability of the interbank market
depends on its network topology. The authors argue that diversification,
measured by the number of linkages between nodes (financial institutions),
enhances system stability. Complete networks, where all nodes are equal to one
another (all have the same bilateral obligations), are more robust than
incomplete ones with a more sparse structure. Freixas et al. (2000) reach a
similar conclusion and argue that complete networks embed the smallest risk of
contagion, while the failure of a highly interconnected node is likely to trigger a
systemic event. Hence, a credit chain structure of the type found in our data
renders the banking system more fragile. Just like Allen and Gale (2000),
Castiglionesi and Navarro (2008) study contagion in the interbank market
using a four bank model and incorporate moral hazard into the analysis. The
interbank network thereby acts as an insurance mechanism for banks with
liquidity needs. The authors claim that a high level of connectivity increases
systemic risk, because banks tend to seek more risky investments given the
greater insurance effects derived from the network.
Gai and Kapadia (2010) develop an analytical model of contagion in

financial networks with arbitrary structure and explore how the probability and
potential impact of contagion is influenced by aggregate vs. idiosyncratic
shocks, as well as changes in network structure and asset market liquidity. The
authors claim that financial systems exhibit a robust-yet-fragile tendency: while
the probability of contagion may be low, the effects can be extremely
widespread when problems occur. This is confirmed by our work. Acemoglu
et al. (2013) point out the robust-yet-fragile nature of complete networks,
which tend to be considerably more fragile than sparse ones. In line with this
insight, Eboli (2019) reach the conclusion that both complete and star-shaped
networks, show the ‘robust-yet-fragile’ property, while the incomplete regular
and cycle-shaped networks are found to be less robust than the more complete
ones.
In recent years, simulation-based studies have also gained in popularity. As

one of the seminal contributions, Eisenberg and Noe (2001) develop an
algorithm to quantify systemic risk in financial market clearing and the implied
default risk faced by each participant. Rogers and Veraart (2013) extend this
framework by introducing the cost of default through a recovery function that
drops discontinuously at the default boundary and then decreases linearly with
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the amount of assets available. Along similar lines as our study, they discuss the
extent to which institutional consortia may have the means and incentives to
rescue failing banks.
Furfine (2003) introduces a sequential default algorithm, which has been

widely applied in many studies, to simulate risk contagion. The algorithm
defines a default cascade in which the contagion is triggered by the failure of a
randomly selected bank, and then the credit loss is passed on to other banks
through the directed linkages. Once a bank has reached negative capital, it is
considered in default. The contagion process terminates, if no additional bank
fails in the current round. Our study employs the same logic.
Cifuentes et al. (2005) introduce a model which takes the effects of ‘fire-sales’

of illiquid assets into consideration. They show that if the demand for illiquid
assets is less than perfectly elastic, forced sale may depress the market prices of
such assets, and marking-to-market of the asset book can induce a further
round of endogenously generated sales of assets, depressing prices further and
inducing even more sales. Battiston et al. (2012) introduce a simulation
algorithm to compute the DebtRank, which is a measure of systemic risk. The
DebtRank, similar to the Google PageRank, measures the fraction of the total
economic value in the network that is potentially affected by the default of a
given company. Data limitations have prevented us from linking our analysis to
these contributions more explicitly.
While banking networks have been widely explored, the examination of inter-

corporate lending networks is still in its infancy, largely due to the limited
availability of data. Yang et al. (2014) investigate Chinese credit linkage
networks and show in their simulation that contagion spreads in a linear form,
i.e., as the scale of the initial shock grows, the total number of firms in default
and the volume of bad loans both increase linearly. Our study does not confirm
this result. Niu et al. (2017) propose a hybrid representation of guarantee
networks by applying a gradient boosting model for credit risk assessment.
They find that often hundreds or thousands of enterprises back each other and
constitute a sparse complex network. This study builds on this insight with a
unique data set.
This study contributes to the existing literature in several ways. First, we

present the first in-depth empirical analysis of contagion and systemic risk in
the Chinese inter-corporate loan guarantee market based on real-world data
from a field research study. By means of a sequential default algorithm, we
develop an analytical framework to simulate the paths of default contagion and
to evaluate its consequences. Second, while so far most of the studies on
systemic risk have focused on interbank networks, our analysis provides one of
the first attempts to explore the question from a corporate perspective, with a
special focus on SMEs. Third, when modelling the loss cascade process, distinct
from other studies on interbank networks (e.g. Furfine, 2003; Upper and
Worms, 2004), in which interbank assets and liabilities are used to compute the
contagion threshold, we propose a new capital threshold measure which better
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captures the capital structure and financing capability of SMEs by taking into
consideration both the off-balance sheet private lending debt and the unused
bank credit line.

3. Data

The dataset used in this study consists of the loan guarantee and other
financial data of 575 local private companies based in the city of Wenzhou
in Zhejiang Province. Effective date is 31 May 2015. Wenzhou is well
known for its private economic and financial activities in China and is
therefore a representative case for studying the effects of debt contagion.
The data has been supplied by the Customer Risk Monitoring and Early
Warning System of China Banking Regulatory Commission (CBRC) and
has subsequently been augmented by our own calculations using the results
of the empirical analysis. Supplementary surveys of selected sample
companies confirmed the accuracy of the data. Confidentiality requirements
prevent us from reporting sector identities and company names. See
Table 1 for an overview.
Table 2 shows the descriptive statistics of our sample. The dataset consists

mostly of SMEs with a size of assets ranging from CNY 3.03 million up to
CNY 2291.20 million. Mean and median of the total assets are CNY
210.98 million and CNY 155.10 million respectively, while average net assets
are CNY 119.59 million. The average loan guarantee exposure of each
company is CNY 29.43 million. Unused bank credit lines represent the most
important refinancing source for many Chinese SMEs; their aggregate
availability is substantial for our sample. Overdue loans signal deteriorating
liquidity, while non-performing loans deliver a much stronger message of
potential insolvency.
Companies are categorised into three different risk classes based on whether

bank loan payments are overdue for < 90 days and whether bank loans are
non-performing (payments overdue for more than 90 days). The classification
follows international norms. For our sample, 39 percent of the companies have
been struggling to service their debt according to the contractual schedule and
26 percent of them were in a state of financial distress at the cutoff date of 31
May 2015, implying a significant probability of default.

(1) Risk class 1 (Low risk): no overdue or non-performing bank loan (61
percent of sample companies).

(2) Risk class 2 (Medium risk): overdue bank loan, no non-performing bank
loan (13 percent of sample companies).

(3) Risk class 3 (High risk): non-performing bank loan (26 percent of sample
companies).
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4. Loan guarantee network

Loan guarantees connect companies through the implied set of contingent
claims. It functions similarly to interbank networks on the basis of the banks’
asset and liabilities (Boss et al., 2004) or payment networks implied in the flow

Table 2

Descriptive statistics of variables (CNY million)

Variable Symbol Max Min Mean Median

Total assets TAi 2291.29 3.03 210.98 155.10

Total liabilities TLi 1325.47 0.44 91.39 59.67

Net assets NAi 1156.51 –105.17 119.59 92.24

Loan guarantee Li 827.70 0.00 29.43 7.00

Unused credit lines LOCi 972.97 0.00 28.91 10.61

Bank loan BLi 637.05 0.20 57.00 35.00

Overdue loan OBLi 367.54 0.00 11.95 0.00

Non-performing bank loan NBLi 324.74 0.00 8.00 0.00

Table 1

List of available data and sources

Name Symbol Description Source

Total assets TAi In-balance sheet total asset CBRC

Total liabilities TLi In-balance sheet total liability CBRC

Net assets NAi Total asset - Total liability CBRC

Loan guarantee Li Contingent loan guarantee

liability

CBRC

Unused credit lines LOCi Unused credit lines of the year CBRC

Bank loan BLi Total amount of bank loan CBRC

Overdue bank loan OBLi Total amount of overdue bank loan CBRC

Non-performing bank loan NBLi Total amount of non-performing

bank loan

CBRC

Debt ratio di Total liability/Total asset own cal.

Private lending ratio bi Total private lending debt/total

in-B.S. liability

own cal.

Recovery rate hi % of loss recovered own cal.

Bank lending policy parameter ci % of unused bank credit line

granted

own cal.

Capital buffer Ki Capital reserve of company i own cal.

Defaulted company D A set of companies in default own cal.

Default impact DIi Capital losses due to contagion own cal.

Edge weight wij Weight of each edge, wij = Lij own cal.

(In-/Out-) degree k�i ,k
þ
i , ki (In-/out-) degree own cal.

Rounds of contagion m Rounds of contagion own cal.
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of interbank payments (Soram€aki et al., 2007). Let all loan guarantees be
represented by the matrix L 2 R

n�n, in which each element Lij represents a
bilateral contingent guarantee commitment of company j to company i (i.e.,
company i is guaranteed by company j). We assume Lij ≥ 0 (if i 6¼ j), and
Lij = 0 (if i = j). In later sections of this article, we will use the company
identifier in a similar fashion: i represents a company triggering contagion,
while j is a guarantor receiving claims due to i’s default.
The resulting loan guarantee network can be depicted with a weighted

directed graph G = (V,E). V ¼ 1; . . .nf g represents the set of companies that
are the nodes (vertices) of G; E are the edges of G that depict the links between
companies i and j based on loan guarantees. Figure 2 presents the loan
guarantee network G for our sample of 575 companies from Zhejiang Province
as of 31 May 2015.
A is defined to be the adjacency matrix of G in which each element aij indicates

whether company j has a loan guarantee liability to company i (i.e. aij = 1 if
Lij> 0, otherwise aij = 0). Finally, W is the corresponding matrix of edge
weights, in which the weight of the edge from node i to j equals the amount of
contingent guarantee liability of company j to company i (wij = Lij).

Figure 2 Loan guarantee network G consisting of 575 companies from Zhejiang Province as of 31

May 2015. Nodes are coloured according to their risk classes: light gray for risk class 1, gray for risk

class 2 and black for risk class 3. The colour of each edge represents the risk class of the source node.
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5. Network topology

5.1. Degree

Degree measures the connectivity of a node in a network. A node is
considered to be more influential or systemically important to others if it has a
higher degree value (Freeman, 1977). Define the in-degree (k�i ) of node i as the
number of inward edges adjacent to it; correspondingly, the out-degree (kþi ) is
the number of outward edges.

k�i ¼
X
j

aji kþi ¼
X
j

aij ð1Þ

where aij and aji are the elements from the adjacency matrix A. They represent
the inward and outward edges linked to node i. For a directed network, the
degree (ki) is the sum of number of in-degree and out-degree connections of a
node.

ki ¼ k�i þ kþi ð2Þ

Figure 2 reveals the presence of nodes with widely differing connectivity. This
observation is further confirmed by analysis of the in-degrees and out-degrees
of nodes as shown in Figure 3, in which the size of nodes represents the
corresponding (i) in-degree and (ii) out-degree values of the nodes (i.e., the
larger the size of the node, the higher the in-degree or out-degree value). In
sum, only a few companies have very high connectivity, thereby acting as the
‘hubs’ of the loan guarantee network.
Figure 4 display the degree distribution P(k) for the sample. We notice that

the distributions of ki, k
�
i and kþi ) are all skewed to the right and follow a

power law distribution. This indicates that the topological structure of G is
close to ‘scale-free’, which implies that it is robust in the case of accidental
failures but vulnerable to coordinated attacks (Barab�asi, 2009). This property
invites the scrutiny of regulatory bodies and financial market watchdogs as
cascading losses can spill over into the banking sector and may even affect the
real economy.

5.2. Small world

Another important property often found in real-world networks is the small
world effect, which refers to the phenomenon that the distance between any two
nodes in a network is very small, even though the network size is large. Boss
et al. (2004), for example, find that the Austrian interbank network has an
average shortest path length of 2.26, meaning that it takes less than three steps
to go from any one node of the network to another. In a small world network,
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several highly interconnected ‘hubs’ are acting as the ‘bridges’ linking different
parts of the network. As the shortest path length shrinks, economic or financial
shocks travel much more quickly throughout the network, implying a greater
exposure to systemic risk.

Figure 3 Illustration of (a) in-degree (k�i ) and (b) out-degree (kþi ) of the loan guarantee network;

size and colour of the nodes represent the corresponding in-degree or out-degree values and risk

classes respectively.
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Our loan guarantee network G has an average shortest path length of 5.13,
suggesting the presence of a small world effect with about 5 degrees of
separation. When considering its diameter, i.e., the length of the longest
geodesic path between any two nodes in terms of number of edges, it is 19 for
our sample and therefore about four times as large.

5.3. Clustering coefficient

The statistical method for measuring the clustering of a node i in a network is
the (local) clustering coefficient (Watts and Strogatz, 1998). It measures how
close a node’s neighbours are to being a fully connected (or complete) network.
For loan guarantee network G = (V,E), we define Ni as the neighbouring

nodes which are directly connected to node i:

Ni ¼ tj : eij 2 E _ eji 2 E
� � ð3Þ

The local clustering coefficient ci for node vi is then defined as the proportion
of linkages between the number of linkages that could possibly exist between
them. For a directed graph, eij is different from eji, and therefore for each
neighbourhood Ni there are pi (pi –1) links that could exist among the vertices
within the neighbourhood (pi is the number of neighbours of a vertex). Thus,
the local clustering coefficient for directed graphs is given as.

ci ¼
j ejp : tj; tp 2 Ni; ejp 2 E
� �j

pi pi � 1ð Þ ð4Þ

where ejp is the number of connected pairs between all neighbours of node vi. ci
is between 0 and 1, and measures how interconnected among themselves the
neighbours of a node are.
Figure 5 reports the relationship between the clustering coefficient ci and the

degree ki. The negative slope of the plots suggests that companies with a low
number of linkages (small degree value) are more likely to connect to
neighbours that are highly interconnected with each other (large clusters),
whereas companies with a high number of linkages are more likely to connect
to sparsely connected neighbours. The average local clustering coefficient ci is
0.0258, which is relatively small compared to other real-world networks.

5.4. Assortativity

We further investigate the network assortativity by examining the rich-club
coefficient. A rich club effect emerges when nodes with high centrality tend to
connect with each other (Alstott et al., 2014). The existence of a rich club effect
has an important impact on the stability of the network, as through these
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highly interconnected ‘hubs’, disruptions can be transmitted within the network
much more easily.
For the loan guarantee network G = (V,E), we define V>k as the set of nodes

with degree larger than k, N>k as the number of nodes with degree larger than k,
and E>k as the number of edges connecting these nodes (Colizza et al., 2006).
The rich-club coefficient / kð Þ is then given by:

/ kð Þ ¼ 2E[ k

N[ k N[ k � 1ð Þ ð5Þ

We further normalise this measure to account for the fact that nodes with
higher degrees naturally tend to be more densely connected given that they
have more incident edges (McAuley et al., 2007).

q kð Þ ¼ / kð Þ
/unc kð Þ ð6Þ

where /unc kð Þ is the rich club coefficient of a maximally random network with
the same degree distribution as the network under study. For a certain degree k,
q(k)> 1 indicates the presence of a rich club effect.
Figure 6 depicts how the normalised rich club coefficient q(k) is linked to the

degree k. The results suggest the presence of a rich club effect for a considerable
degree range. It emerges at around 4, peaks at k = 13 and continues to persist
until around 19. Hence, nodes with 13 linkages are most likely to connect to
each other.
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6. Modeling default contagion

In this section, we develop the theoretical framework for the subsequent
network stress testing simulation. Loan guarantees are assumed to get called
upon as soon as they are ‘in the money’ and then cascade through the network
without the legal process injecting time buffers to slow down contagion. The
subsequent discussion relaxes these restrictions. The theoretical setup is divided
into three parts: the definition of the capital threshold beyond which loan
guarantees can be executed as well as the state of default and, finally, the
characterisation of the loss cascade process and the role of bank lending
policies in containing the loss spillovers.

6.1. Capital threshold and default

The balance sheet of a company in the loan guarantee network is described
with its three main components: total assets (TAi), total liabilities (TLi) and net
assets (NAi). Off-balance-sheet financing consists of private lending (PLi) and
loan guarantees (Li). Figure 7 shows the stylised balance sheet for a sample
company.
Since we lack data on actual private lending, we introduce the private

lending ratio bi which describes the relationship between the total on-balance-
sheet liabilities TLi and the off-balance-sheet private lending TLi for each
company i.
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Figure 6 Normalised rich club coefficient q(k) vs. degree k. The dashed line is the threshold line

q(k) = 1.
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bi ¼
PLi

TLi
ð7Þ

The adjusted net asset position NAi of company i defines the actual capital
reserve once private lending is taken into account.

NAi ¼ TAi � 1þ bið Þ � TLi ð8Þ

Bank credit lines represent the most important refinancing source for many
Chinese SMEs. They establish a maximum loan balance permitted by the
lender and serve as an indication of the availability of new debt. A company’s
financing potential may, however, be negatively affected by risk concerns
triggering the (partial) withdrawal of existing credit lines (as well as the
rejection of new loan applications). Define LOCi as the unused bank credit line
of company i and ci 2 0; 1½ � as the corresponding lending policy parameter. NLi

describes the availability of new loans to company i.

NLi ¼ ci � LOGi ð9Þ

If ci = 0, then banks are not willing to issue any new loans, whereas ci = 1
corresponds to full lending support in line with previous commitments. The
combination of adjusted net assets and available new loans signifies the
maximum shock that the company can cope with. We refer to it as the capital
threshold.

Definition 1 (Capital Threshold)

The capital threshold (Ki) of company i is the sum of its net asset (NAi) and
available new loans (NLi).

Figure 7 On-balance sheet and off-balance sheet items of company i.
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Ki ¼ TAi � 1þ bið Þ � TLi þ ci � LOCi ð10Þ

A company is technically in default when it fails to fulfil its interest and debt
repayment obligations. Default arises either from the lack of liquidity or from
over-indebtedness (Ross et al., 2012). Both require credit workout, either in
pre-bankruptcy proceedings or during legal bankruptcy administration. While
liquidity problems can be temporary in nature, a negative net worth is often an
operational issue as well, requiring more fundamental restructuring. Following
(Lo, 2011), we argue that over-indebtedness is the more relevant issue for
predicting default. For the purposes of our study, we define default as follows:

Definition 2 (Default from Contagion)

A company defaults, if the losses from the loan guarantee liabilities exceed its
own capital threshold.
We consider the case where defaults cascade through the network in an

uninhibited fashion, meaning unsatisfied claims from one company’s default
lead to the immediate exercise of the loan guarantee (see Eisenberg and Noe,
2001; Upper, 2011; Rogers and Veraart, 2013). They are rolled over to other
companies until all claims are satisfied. Thus, we are looking at the case
where the legal process does not act as a potential buffer to slow down
contagion. We further make the following simplifying assumptions.

Assumption 1 (Firm and Default Characteristics)

For the subsequent simulation analysis, we specify legal form, loan
guarantee, and execution of guarantee commitment and default as:

(1) Each company has limited liability, i.e., the owners’ wealth does not serve
as collateral.

(2) The nominal value of the contingent loan guarantee liability equals the
nominal value of the guaranteed debt (e.g. bank loan).

(3) Each company defaults on all of its debt indifferently; the repayment of
existing debt during the liquidation process is also indifferent.

(4) After the default of one company, the net losses will immediately be
passed on to its guarantors.

6.2. Loss cascade process

A loss cascade is a sequence of links through which a loss following default
propagates in the network. Define m as the number of rounds of the cascade
process, and Km(i) as the capital threshold of company i in round m. At the
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initial stage (m = 0), company i experiences a shock 2i [K0 ið Þ which results in
its default. It leads to an immediate write-down of its debt and the exercise of
the associated loan guarantees. Using the sequential default concept of Furfine
(2003), we apply the following algorithm.

Algorithm 1 (Sequential Default Algorithm)

The algorithm simulates the loss contagion process based on the following
steps:

(1) An initial shock (either targeted or random) is simulated to hit a company i
or a group of companies, triggering the first round of contagion.

(2) For each round of contagion from 1 to m:

• the guarantee losses from round m�1 to any company j are subtracted
from its capital threshold, and the new capital threshold after round m
is recalculated. Any company with a negative capital threshold is then
considered as defaulted.

• If at least one company defaults in round m, the algorithm repeats Step
2, otherwise goes to Step 3.

(3) The loss contagion stops, and the network is in a new equilibrium.

If hi 2 0; 1½ � represents the recovery rate for the company’s debt, then i’s
default triggers losses of (1�hi) 9 Lij for each of its guarantors j. Due to the
difficulty of determining the appropriate recovery rate in practice, we follow
Furfine (2003) and test for different values for h, which we, however, assume to
be constant across companies. Without loss of generality, we ignore potential
simultaneity problems. As pointed out in Upper (2011) and in contrast to
Eisenberg and Noe (2001), the simulation does not account for higher-order
defaults increasing losses at previously failed companies, which in turn may
reduce the recovery rate on their liabilities.
The loss from the loan guarantee is imputed into the capital threshold of j. If

it is smaller than its capital threshold, then the shock stops. Otherwise company
j defaults as well, triggering a new round of losses to its guarantors. Company
j’s capital threshold after the first round of the cascade is computed as:

K1 jð Þ ¼ max K0 jð Þ � 1� hið ÞLij; 0
� � ð11Þ

K1(j) is company j’s capital threshold after the first round of contagion and
K0(j) represents its initial capital threshold. In each subsequent round, we
update the losses from the defaulted companies to the balance sheets of their
guarantors and set the defaulted companies’ capital thresholds to zero. The
capital threshold of company j after m rounds of contagion is then given by:

© 2019 Accounting and Finance Association of Australia and New Zealand

1938 W. Li et al./Accounting & Finance 59 (2019) 1923–1946



Km jð Þ ¼ max K0 jð Þ �
Xm
c¼0

X
i2Dc�1

1� hið ÞLc
ij; 0

( )
ð12Þ

where
Pm

c¼0

P
i2Dc�1 1� hið ÞLc

ij represents the total guarantee losses that
company j has received during all m rounds and Dc�1 is the set of defaulted
companies in round c�1 or before (with c ¼ 1. . .m). At m, the set of defaulted
companies Dm can also be characterised as a subset of the population of
companies V; it represents the sum of initially defaulted companies and the
companies not surviving one of the m rounds of contagion.

Dm ¼ j 2 V : K0 jð Þ ¼ 0
� � [ j 2 V : K0 jð Þ[ 0;Km jð Þ ¼ 0

� � ð13Þ

The loss cascade process is summarised in Figure 8 for an exemplary
round m.
Following Cont et al. (2010), we can now define the default impact DI(i) as

the losses due to contagion from the default of company i alone.

Definition 3 (Default Impact)

We measure the impact caused by the default of company i with the default
impact DI(i), which is computed as the total loss of capital in the loss cascade
process triggered by the default of company i:

Figure 8 The loss cascade process in the loan guarantee network. hi is the recovery rate of

guarantee losses of company i, Lm
ij is the guarantee loss of company j due to the default of company

i, and Km(j) is the capital threshold of company j at an exemplary round m.
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DI ið Þ ¼
X
j 6¼i

K0 jð Þ � Km jð Þ� � ð14Þ

7. Stress testing analysis

This section presents the simulation-based stress testing analysis of the loan
guarantee network G by applying the loss contagion algorithm proposed above.
We start with a baseline scenario that reflects moderate market conditions. The
focus of analysis is then shifted to how changes in the recovery rate will affect the
outcome and how the system responds to random vs. targeted shocks.

7.1. Baseline scenario

In the baseline scenario, each company j starts out with an on-balance-sheet
capital structure represented by d0j ¼ TL0

j =TA
0
j at the initial stage m = 0.

Following, we illustrate the simulation results of a moderate case, in wich each
company j in our sample j ¼ 1; . . .; 575ð Þ is assumed to operate with a private
lending ratio of bj = 0.3 which represents the approximate average of the
sample companies actually reporting this figure. We make the optimistic
assumption that 50 percent of the bank loan can be recovered during the
liquidation process, i.e., hj ¼ 0:58j.
Banks are believed to be risk averse and reluctant to take on high-risk

projects. We select a moderate bank lending policy parameter of cj ¼ 0:58j, i.e.,
50 percent of the total unused bank credit line of the company can still be used.
At the same time, we account for the fact than banks no longer issue new loans
to companies with solvency issues by setting cj = 0 for any company j with an
overdue or nonperforming loan (in risk class 2 or 3).
The baseline analysis assumes that one company fails at a time and then

analyses its impact on the loan guarantee network. Table 3 reports results for
the 20 firms with the highest default impact based on 575 simulation rounds,
one for each sample company. The baseline analysis already delivers a
concerning message regarding the potential impact of contagion. The default of
company C0008 has the highest default impact with CNY 189.43 million
capital loss, while the failure of B0020 triggers the default of 21 other
companies. Company C0101 is found more prone to default than other
companies, as it is more likely to be involved in the loss contagion process.
Across the entire loan guarantee network, the failure of a single company
triggers on average 1.8 rounds of loss contagion and 3.1 company defaults,
causing an average default impact of CNY 112.35 million.

7.2. Sensitivity to recovery rate variations

The next step is to examine how variations of the recovery rate affect the
stability of the loan guarantee network, while keeping the private lending ratio
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(bj) and the bank lending policy parameter (cj) constant. Table 4 summarises the
results. First of all, contagion occurs regardless of the choice of recovery rate
other than in the unrealistic scenario of full loss recovery (hj = 1). Second, and
not surprisingly, we find that the contagion effect gets stronger as the recovery
rate decreases. Third, and most remarkably, only few companies fail in our case
due to contagion even if the recovery rate drops to zero. This can be explained
by sample companies still having considerable capital reserves relative to their
contingent loan guarantee liabilities. Thus, in contrast to evidence from
interbank networks (e.g. Upper and Worms, 2004), the failure of a single
company is unlikely to trigger a large-scale loss from contagion in this network.
This is all the more noteworthy as our contagion algorithm is removing all the
judicial buffers for slowing down network infection. The basic setup is therefore
ideally suited to study the impact of crisis-triggered contagion.

Table 3

Summary of the baseline scenario analysis with a static capital structure and with bj = 0.3, hj = 0.5

and cj = 0.5 8j

No. Company

Default triggered by this company

Default triggered by

other companies

No. of rounds

of contagion

No. of defaulted

companies

Default impact

(CNY million) No. of own defaults

1 C0008 4 14 189.43 0

2 A0038 3 12 185.71 2

3 C0017 3 17 177.81 4

4 C0043 3 9 177.39 4

5 A0099 3 15 172.16 0

6 A0063 3 4 166.30 1

7 B0020 4 21 165.85 0

8 C0101 3 6 164.32 8

9 C0041 3 11 156.30 1

10 A0004 2 7 156.28 1

11 A0056 2 5 154.49 1

12 A0039 2 9 153.88 1

13 C0107 2 2 151.75 1

14 B0007 2 2 150.81 1

15 B0011 2 3 150.55 1

16 A0054 2 8 148.13 1

17 B0016 2 5 147.29 1

18 B0010 2 7 145.50 1

19 A0035 2 4 143.75 4

20 C0039 2 6 142.11 2

Simulation

Summary

No. of companies 575

No. of simulations 575

Avg. rounds of loss contagion 1.8

Avg. no. of defaults due to contagion 3.1

Avg. default impact (CNY million) 112.35
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7.3. Random and targeted shocks

Industrial specialisation renders a business community fragile by exposing
companies to similar risk factors. Consequently, a highly concentrated network
of industries/companies is more prone to systemic risk. The connections
between companies in China are manifold and extend beyond industrial
relatedness. They include family ties, friendship and, in particular, financing
links via loan guarantees. These company linkages lead to the formation of risk
clusters that may give contagion a much larger momentum. The next step of
our analysis accounts for the possibility that groups of companies are hit by
random or targeted attacks.
For the random shock scenario, the simulation starts with the failure of n

randomly selected companies using a Poisson distribution. In contrast, the
targeted shock scenario analyses the loss contagion triggered by the joint
default of the n most systemically important companies at the initial stage (as
measured by the adjusted out-degree). Table 5 shows the results for both
scenarios. Average default impact increases with the number of companies in
default and is considerably higher for targeted shocks. The latter can be taken
as evidence that G has a scale-free topological structure that is comparatively
robust under random shocks and fragile under the targeted shocks affecting
highly interconnected nodes.

7.4. Lending policy constraints and contagion impact

Since the seminal work of Modigliani and Miller (1958), economists have
devoted much effort to studying companies’ financing policies. One of the
consensus conclusions is that rising leverage increases the likelihood and the
cost of financial distress (see Myers, 1984; Bradley et al., 1984; Hackbarth et al.,
2006). In the final step of our analysis, we investigate how leniency vs. tightness
of bank lending policies can help to cushion the effects of contagion.

Table 4

Results of the sensitivity analysis with varying values of the recovery rate (hj). Other settings are

bj = 0.3 and cj = 0.5

Recovery rate

hj = 1 hj = 0.75 hj = 0.5 hj = 0.25 hj = 0.1 hj = 0.05 hj = 0

No. of companies 575 575 575 575 575 575 575

No. of simulations 575 575 575 575 575 575 575

Avg. round of contagion 0 1.4 1.8 1.8 2 2 2.4

Avg. no. of defaults due

to contagion

0 1.7 3.1 3.8 4.3 4.3 4.6

Avg. default impact

(CNY million)

0 78.31 112.35 137.46 139.80 145.95 162.23
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Specifically, we compare the outcomes of three alternative lending regimes,
cj 2 0; 0:5; 1f g. As before, private lending ratio (bj = 0.3) and recovery rate
(hj = 0.5) are set at moderate levels. We generate random shocks from a
Poisson distribution to hit the loan guarantee network G, repeat the simulation
1000 times, and report the average results.
Several interesting findings are revealed by the simulation outcome presented

in Figure 9. First, we notice that, as the level of debt (as described by debt ratio
dj) in each company increases, the average survival ratio after a shock decreases
from nearly 100 percent to slightly above 10 percent, together with a rising
capital loss of up to CNY 1.70 billion. Notably, when the debt ratio exceeds 70
percent, more than 80 percent of the companies default. Second, rising levels of
corporate debt cause larger contagion effects across the loan guarantee
network. In particular, a jump is observed as the debt ratio starts to exceed 30
percent with as much as 70 percent of defaults caused by the contagion. In line
with the findings of Upper and Worms (2004), this points to the existence of a
critical threshold beyond which the effects of contagion become heavily
accentuated within the loan guarantee network. After that, however, the
contagion effects gradually attenuate, when the increasing leverage renders
more and more companies insolvent at the initial stage. Moreover, bank
lending support during the crisis also proves vital as a ‘safety net’ for SMEs.
The results indicate that as much as 20 percent more companies can survive the
shock under the full lending support setting compared to the other two
scenarios.

8. Conclusion

In this article, we investigate the potential fragility of the inter-corporate loan
guarantee market in China in terms of default contagion. Our analysis delivers
a strong narrative regarding the usefulness of network theory for the detection
of systemic risk. In particular, the simulation-based framework proposed in
this article provides important insights for both regulatory authorities and
financial institutions. By adopting a network focus, regulatory bodies can

Table 5

Simulation results for random vs. targeted shocks with n representing the number of defaulting

companies and the other parameters set at bj = 0.3, cj = 0.5 and hj = 0.5

No. of companies in the group

Random shock Targeted shock

n = 10 n = 20 n = 30 n = 10 n = 20 n = 30

No. of simulations 100 100 100 100 100 100

Avg. round of contagion 2.1 2.9 3.5 3 3 4

Avg. no. of defaults due to contagion 13.8 19.2 32.1 20.4 24.5 36.9

Avg. default impact (CNY million) 764.42 1106.63 1988.39 815.48 1555.88 2714.46

© 2019 Accounting and Finance Association of Australia and New Zealand

W. Li et al./Accounting & Finance 59 (2019) 1923–1946 1943



strengthen their early warning systems using simulation-based tools and
network-analytic indicators. Along the same lines, financial institutions can
develop a more robust understanding of their actual risk position.
Moreover, our analysis also suggests that it may be beneficial to establish a

more centralised government guarantee programme or credit guarantee scheme
(CGS), similar to the SBA’s 7a loan program in the US and the Enterprise
Finance Guarantee (EFG) programme in the UK, in which the government is
acting as the lender of last resort (LOLR). Government intervention can help
to dampen the strength of loss cascades and thereby help more companies to
survive (targeted) shocks. Given the generally significant deadweight costs of
financial distress and bankruptcy, we conjecture that such public policy actions
will overall be welfare enhancing.
While our analysis delivers a strong narrative for more attention by oversight

bodies, it comes with an important caveat which makes our research
exploratory in nature. The sample used in this study is fairly small and, given

(a) (b)

(c) (d)

Figure 9 Summary of the simulation results for three alternative bank lending policy regimes

(cj = 0, cj = 0.5, cj = 1) with hj = 0.5 and bj = 0.3. Plots (a) and (b) respectively display the

average survival ratio (in percent) and the average default impact. Plots (c) and (d) respectively

present the average rounds of contagion and the percentage of defaults due to contagion.
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the focus on a sub-region within Zhejiang Province, is likely to entail various
biases. Follow-up work therefore needs to deliver a better understanding of
geographical and sectoral differences. As an added benefit, it can help to clarify
how supposedly contained crises can infect other sectors and geographies.
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