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A B S T R A C T

With machine learning tools, we document that firm fundamentals have explanatory power on
the shape of the option implied volatility (IV) curve that is both economically and statistically
significant. We also find that, after accounting for fundamentals, the associated IV process can
generate overreaction in the long-term IV with respect to change in the short-term IV, and can
allow a positive profit from at-the-money straddle writing, explaining puzzling patterns in the
literature. We also provide a simple model linking the IV to firm fundamentals, which permits
realistic IV curves and is consistent with the empirical findings.

. Introduction

The option implied volatility (IV) is one of the central objects of research in derivatives since it reveals the market price of risk
f the underlying asset. It also captures investors’ demand of compensation for taking the associated higher moment risks, such
s volatility (Bakshi and Kapadia, 2003; Carr and Wu, 2009), skewness (Xing et al., 2010; Chang et al., 2013), and variance-of-
ariance risk premiums (Kaeck, 2018). The IV curve is flat under the assumptions of constant volatility and without jump risk in
he underlying asset’s stochastic process in Black and Scholes’ (1973) framework. Cox and Ross (1976) and Hull and White (1987),
mong others, relax the constant volatility assumption by allowing the volatility to be a deterministic function or a stochastic process
ver time. Bakshi et al. (1997) and Pan (2002) introduce an additional jump factor into the IV process. Duan and Wei (2009) show
hat a systematic risk ratio can provide an understanding of the level and slope of the IV curve. The generalized autoregressive
onditional heteroskedasticity option pricing model developed by Duan (1995), along with its subsequent refinements, such as that
n Christoffersen et al. (2013), explain more stylized facts about the IV. However, none of these studies explain the IV curve using
he information of firm fundamentals. On the other hand, main stream asset pricing models, such as the well known (Fama and
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French, 1993) three-factor model, rely on firm fundamentals to explain the expected stock returns. Green et al. (2017) and Han et al.
(2022), among others, use more firm characteristics to discern expected returns across equities. Intuitively, those fundamentals that
can explain stochastic volatility or jump risk may have an influence on the IV curve; however, there is a lack of research on whether
firm fundamentals affect options.

In this paper, we examine how firm fundamentals help us to understand the shapes of the IV curve in the cross-section. We focus
n three null hypotheses. The first hypothesis is that the IV level, smile, smirk, or skew have no relation with firm fundamentals; the
econd is that the inclusion of firm fundamentals does not provide any economic benefit to the IV level or shape portfolios; and the
hird is that firm fundamentals are unrelated to the option expectations and overreaction puzzle. Following Green et al. (2017) and
he influential machine learning paper of Gu et al. (2020), we start from the large and representative set of 94 firm fundamentals.
ince simultaneously including 94 variables in a regression has the problem of overfitting, in the spirit of Gu et al. (2020) and
thers, we apply the Tibshirani (1996) least absolute shrinkage and selection operator (LASSO) to select the most important subset
f fundamentals that show their relevance in the training period.

Based on a cross-section of monthly options’ data on 3345 U.S. firms for the 1996–2019 period, the LASSO approach selects
hose firm fundamentals that matter in predicting the IV curve changes. On average, the selection frequency is 27.44% for the IV
evels, captured by the at-the-money (ATM) IV; is 9.62% for the IV slopes, measured by the difference between the out-of-the-money
OTM) and ATM IVs; and is 9.32% for the IV curvatures, gauged by the average of OTM and in-the-money (ITM) IVs minus the ATM
V, respectively. This provides us with 13 fundamentals representing the top ten variables for the IV levels, slopes, and curvatures:
lliquidity, beta, size, dividend-price ratio, cash flow volatility, unexpected quarterly earnings, R&D to sales, scaled earnings forecast,
diosyncratic return volatility, earnings volatility, depreciation, number of analysts covering stock, and volatility of share turnover.

e then use them to test the three hypotheses.1
The data strongly reject the first two hypotheses after we control for the risk-neutral skewness and kurtosis (Bakshi et al.,

003), and the systematic risk ratio (Duan and Wei, 2009). Our finding indicates that firm fundamentals play an important role in
etermining the shape of the IV curve and option prices. Using 30-day put options, 11 out of the 13 firm fundamentals show statistical
ignificance in explaining the IV level; 9 of the fundamentals are significant in explaining the IV slope; and 11 explain significantly
he IV curvature. Those fundamentals determine differently the shape of the IV curve and the inclusion of firm fundamentals yields
ore improved modeling for the IV slope and curvature. The inclusion of fundamentals also makes the long–short hedging portfolio,

ased on the estimated IV curve, generate significant returns. These empirical findings are robust to the choice of option types
nd inference methods. Additional empirical tests conducted using call options, 60-day time-to-maturity, and a Bayesian shrinkage
egression that addresses possible nonlinearity and multicollinearity among firm fundamentals yield qualitatively the same results.

We then investigate whether firm fundamentals can provide any insight on two major puzzles in option pricing. The first is the
xpectations puzzle, which is the observation that the option IV tends to exceed the realized volatility of the underlying asset (Bakshi
nd Kapadia, 2003). The second is the overreaction puzzle, which is the fact that the long-term implied variance overreacts to the
hanges in the short-term variance (Stein, 1989; Poteshman, 2001). To investigate whether firm fundamentals can help explain
hese puzzles, we test the third hypothesis that firm fundamentals have no relation with them. Empirically, we find strong evidence,
rom the significant volatility term-structure regression coefficients and the substantial rewarding short straddle returns, that the
ull hypothesis is rejected.

Next, we provide a simple expository theoretical model to understand the relation between firm fundamentals and option prices.
n this model, we extend the Geske (1977) structural model by treating both the equity and equity options, whose pricing functions
epend on firm fundamentals, as contingent claims on the firm value, and by assuming that the time to default is a function of the
irm’s credit-sensitive fundamental variables. In addition to the leverage effect considered in Geske et al. (2016), our theoretical
odel shows that dividend payout, time to default, and book-to-market ratio can also influence the IV function, providing channels

hrough which fundamental variables can affect the IV curve. It allows us to identify the relationship between a fundamental variable
nd the IV curve through its relation with leverage, dividend policy, time to default, or book-to-market ratio, while keeping the
ther fundamentals fixed. Numerical simulations show that this model generates realistic IV smirks, and the implied theoretical
mpact of firm fundamentals on the IV function supports our empirical findings.

Overall, our study demonstrates that firm fundamentals are important in option pricing and they have substantial explanatory
ower on the cross-sectional variation in the IV curve. Our study complements other explanations of the changes in the IV curve, such
s leverage (Toft and Prucyk, 1997), transaction costs (Pena et al., 1999), size and trading volume (Dennis and Mayhew, 2002), net
uying pressure (Bollen and Whaley, 2004), investor sentiment (Han, 2007), and demand-pressure effects (Garleanu et al., 2009).
e also provide evidence that firm fundamentals help predict equity option returns, in line with the studies by Vasquez and Xiao

2019) and Zhan et al. (2022). However, these studies focus on the delta-hedged ATM options while we investigate the whole IV
urve of individual firms.

Our paper adds to the literature of growing applications of machine learning to finance. Rapach et al. (2013), Chinco et al.
2019), DeMiguel et al. (2020), Feng et al. (2020), Freyberger et al. (2020), Gu et al. (2020), Kozak et al. (2020), Avramov et al.
2022a), Bryzgalova et al. (2021, 2022), Cong et al. (2022) and Han et al. (2022), among others, focus on equities based on firm
haracteristics; Avramov et al. (2022b) and Guo et al. (2022) study bonds; and Filippou et al. (2022) analyze foreign exchanges.

1 We also ad hoc select nine representative fundamental measures that are widely used in the stock return literature: a firm’s financial leverage, interest
overage, liquidity, profitability, investment, size, equity market momentum, dividend-price ratio, and book-to-market ratio (e.g., Welch and Goyal, 2007; Rapach
2

t al., 2010; Zhang, 2013; Bai and Wu, 2016), our conclusion remains similar.
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By contrast, we provide the first study on the volatility shapes. Bali et al. (2021) study how firm fundamentals predict option
returns. Conversely, Neuhierl et al. (2022) examine how both firm characteristics and option information impact stock returns.
Recently, Nagel (2021), Giglio et al. (2022), and Zaffaroni and Zhou (2022) provide a review of some of the machine learning
studies in finance.

It is important to point out that there is a lack of theoretical guidance on what exactly the firm fundamentals are that determine
he IV surface. In this paper, we attempt a partial solution by using machine learning tools to identify the variables from a large
et of firm fundamentals. Our solution is empirical and the research design is still limited in possible variables and is subject to
stimation errors. Future research is needed for both theoretical modeling and empirical testing to identify additional variables to
rovide an improved understanding of the problem.

The rest of the paper is organized as follows. In Section 2, we explain the data and empirical procedures. In Section 3, we report
he empirical results. In Section 4, we provide a compound option model for equity option pricing, and discuss the channels through
hich firm fundamentals affect the option IV. We discuss robustness tests in Section 5. We conclude in Section 6.

. Data and methodology

.1. Data

In this section, we describe the data we use to examine the explanatory power of firm fundamentals on the shape of the
V function. We analyze all firms in the U.S. market with options traded between January 1996 and December 2019. We
ollow Green et al. (2017) and Han et al. (2022) to construct firm fundamentals. The data are from CRSP, Compustat, and I/B/E/S.2

Following Green et al. (2017), we winsorize the fundamentals at the 1st and 99th percentiles of their monthly observations. We
use the cross-sectional mean and standard deviation to standardize the observations for each fundamental for each month, and we
replace the missing values with the fundamental’s cross-sectional standardized mean value of zero. Table 1 lists the definitions of
the 94 firm fundamentals. The Appendix in Green et al. (2017) provides their detailed information.

The data on stock option IV and stock price historical volatility are from the Ivy DB Option Metrics. During our sample period,
a firm is included if its 30-day IV curve is available and its stock has been traded for at least 365 calendar days. To align the IV
curve characteristics with firm fundamentals, we assume that annual firm characteristics are available in month 𝑡 − 1 if the firm’s
fiscal year ended at least six months before month 𝑡−1, and that quarterly accounting data are available in month 𝑡−1 if the fiscal
quarter ended at least four months before month 𝑡−1. Subsequently, we match all the fundamentals with the corresponding option
and stock data on the last Wednesday of each month. The sample contains 288 months, 3345 firms, and 417,752 observations.

To capture the shape of the IV curve, we analyze the 30-day IV curve produced by put options by considering only option
IVs with a delta equal to −0.8, −0.5, or −0.2.3 We use the IV levels at an option delta equal to −0.5, the slopes of the IV curve
approximated by the IVs of a put spread option strategy simultaneously buying and selling of put options at different delta levels,
and the curvature of the IV curve approximated by a butterfly spread options strategy buying the OTM and ITM options and selling
the ATM options. Denoting the IV at a delta equal to −0.8, −0.5, or −0.2 by 𝐼𝑉 +, 𝐼𝑉 ◦, or 𝐼𝑉 −, the slope of the IV function is
captured by the following4:

𝐼𝑉 𝑠 = 𝐼𝑉 − − 𝐼𝑉 ◦, (1)

and the curvature of the IV function is captured by:

𝐼𝑉 𝑐 = 𝐼𝑉 + + 𝐼𝑉 −

2
− 𝐼𝑉 ◦. (2)

The main advantage of the measures defined by Eqs. (1)–(2) is their simplicity. There are sophisticated procedures for capturing the
shape of the IV function. For example, one may wish to specify a particular functional form on the IV curve and surface such
that, once fitted to the market observed IV, the set of parameters obtained can serve as a storage for the information on the
IV shape. Dumas et al. (1998), Goncalves and Guidolin (2006), and Bedendo and Hodges (2009) estimate the shape of the IV
function using a polynomial fitting to market observed IVs with respect to the time-to-maturity and strike price/option moneyness
to various degrees. Alternatively, one may specify diffusive processes for the underlying stock return and its instantaneous volatility
complemented by jump processes of various types. Subsequently, the IV can be approximated either by direct calibration from
market observed Black–Scholes IV, as in Jacquier and Lorig (2015) and Aït-Sahalia et al. (2021), or via the calibration from option
prices, as in Bates (2000) and Christoffersen et al. (2009). The non-parametric models, such as principal component analysis and
Karhunen–Loéve decomposition, are also widely used for constructing the measures for the shape of the IV curve. Alexander (2001),
Cont et al. (2002), and Christoffersen et al. (2018) take this approach.

2 We thank Jeremiah Green for providing the SAS code for extraction of firm fundamentals: https://sites.google.com/site/jeremiahrgreenacctg/.
3 Options seldom trade exactly on these deltas on each date; hence, we use the interpolated IV curve provided by the Ivy DB Option Metrics, which estimates

he IV for options that have an American-style exercise feature based on the industry-standard Cox–Ross–Rubinstein (CRR) binomial tree model.
4 The IV slope is sometimes measured as the difference between the OTM and ITM IVs in the literature; our results remain robust with this alternative
3

efinition.
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Table 1
Fundamental variable descriptions.

Variable Description Variable Description

absacc Absolute accruals mom1m 1-month momentum
acc Working capital accruals mom36m 36-month momentum
aeavol Abnormal earning announcement volume ms Financial statement score
age Number of years since first Compustat coverage mve Size
agr Asset growth mve_ia Industry-adjusted size
baspread Bid–ask spread nanalyst Number of analysts covering stock
beta Beta nincr Number of earnings increases
bm Book-to-market operprof Operating profitability
bm_ia Industry-adjusted book to market orgcap Organizational capital
cash Cash holdings pchcapx_ia Industry-adjusted % change in capital expenditure
cashdebt Cash flow to debt pchcurrat % change in current ratio
cashpr Cash productivity pchdepr % change in depreciation
cfp Cash-flow-to-price ratio pchgm_pchsale % change in gross margin - % in sales
cfp_ia Industry-adjusted cash-flow-to-price ratio pchsale_pchinvt % change in sales - % change in inventory
chatoia Industry-adjusted change in asset turnover pchsale_pchrect % change in sales - % change in A/R
chcsho Change in shares outstanding pchsale_pchxsga % change in sales - % change in SG&A
chempia Industry-adjusted change in employees pchsaleinv % change in sales-to-inventory
chfeps Change in forecasted EPS pctacc Percent accruals
chinv Change in inventory pricedelay Price delay
chmom Changed in 6-month momentum ps Financial statements score
chnanalyst Change in number of analysts rd R&D inrease
chpmia Industry-adjusted change in profit margin rd_mve R&D to market capitalization
chtx Change in tax expense rd_sale R&D to sales
cinvest Corporate investment realestate Real estate holdings
convind Convertible debt indicator retvol Return volatility
currat Current ratio roaq Returns on assets
depr Depreciation/PP&E roavol Earnings volatility
disp Dispersion in forecasted EPS roeq Return on equity
divi Dividend initiation roic Return on invested capital
divo Dividend omission rsup Revenues surprise
dy Dividend-price ratio salecash Sales to cash
ear Earnings announcement return saleinv Sales to inventory
egr Growth in common shareholder equity salerec Sales to receivables
ep Earnings to price secured Secured debt
fgr5yr Forecasted growth in 5-year EPS securedind Secured debt indicator
gma Gross profitability sfe Scaled earnings forecast
grcapx Growth in capital expenditures sgr Sales growth
grltnoa Growth in long-term net operating assets sin Sin stocks
herf Industry sales concentration sp Sales to price
hire Employee growth rate std_dolvol Volatility of liquidity (dollar trading volume)
idiovol Idiosyncratic return volatility std_turn Volatility of liquidity (share turnover)
ill Illiquidity stdcf Cash flow volatility
indmom Industry momentum sue Unexpected quarterly earnings
invest Capital expenditures and inventory tang Debt capacity/firm tangibility
IPO New equity issue tb Tax income to book income
lev Leverage turn Share turnover
mom12m 12-month momentum zerotrade Zero trading days

This table reports the descriptions of 94 firm fundamentals from Green et al. (2017).

2.2. The LASSO approach: a machine learning tool

To test whether and what firm fundamentals drive individual equity IV curves, we investigate the role of firm fundamentals in
redicting the changes of the cross-section of IV characteristics of individual equity options. We apply the LASSO approach since
imultaneously including 94 variables in a regression has a problem of overfitting.5

The first step is to generate a forecast of the month t + 1 IV characteristics based on fundamental information available in
onth t. We estimate a series of cross-sectional univariate regressions for each fundamental and for IV levels, slopes, and curvatures,

espectively, as follows:

𝛥𝐼𝑉𝑖,𝑡 = 𝛼𝑗,𝑡 + 𝛽𝑗,𝑡𝑧𝑖,𝑗,𝑡−1 + 𝜖𝑖,𝑡, 𝑖 = 1,… , 𝐼𝑡; 𝑗 = 1,… , 𝐽𝑡−1, (3)

here 𝛥𝐼𝑉 is the change of IV levels, slopes, or curvatures, 𝑧𝑖,𝑗,𝑡−1 is the 𝑗th firm fundamental for firm 𝑖 in month 𝑡−1, 𝐼𝑡 is number of
irms with options available in month t, and 𝐽𝑡−1 is the number of fundamentals available at the end of month 𝑡−1. After estimating

5 We also test the Zou and Hastie (2005) elastic net (ENET) approach and obtain similar results.
4
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the above OLS regression, we are able to construct month t + 1 IV characteristics forecasts for each fundamental,

̂𝛥𝐼𝑉 (𝑗)
𝑖,𝑡+1|𝑡 = 𝛼̂𝑗,𝑡 + 𝛽𝑗,𝑡𝑧𝑖,𝑗,𝑡, 𝑖 = 1,… , 𝐼𝑡+1; 𝑗 = 1,… , 𝐽𝑡, (4)

here 𝛼̂𝑗,𝑡 and 𝛽𝑗,𝑡 are the OLS estimate of 𝛼𝑗,𝑡 and 𝛽𝑗,𝑡 in Eq. (3).
The LASSO approach allows us to select the most relevant individual forecasts to include in the combination in high-dimensional

ettings, and is therefore especially suitable for our analysis with 94 fundamentals and facilitates our tracking of the importance of
irm fundamentals in predicting cross-sectional equity IV curves over time.

Specifically, considering the following multiple regression of realized cross-sectional IV characteristics to the forecasts based on
he individual fundamentals in Eq. (3):

𝛥𝐼𝑉𝑖,𝑡 = 𝛼𝑀𝑅
𝑡 +

𝐽𝑡−1
∑

𝑗=1
𝛽𝑀𝑅
𝑗,𝑡

̂𝛥𝐼𝑉 (𝑗)
𝑖,𝑡|𝑡−1 + 𝜖𝑖,𝑡, 𝑖 = 1,… , 𝐼𝑡, (5)

e estimate Eq. (5) with the weighted LASSO:

arg min( 1
2𝐼𝑡

𝐼𝑡
∑

𝑖=1
𝜔𝑖,𝑡𝜖

2
𝑖,𝑡 + 𝜆𝑡‖𝐵̃

𝑀𝑅
𝑡 ‖1), (6)

where:
𝐵̃𝑀𝑅
𝑡 = [𝛽𝑀𝑅

1,𝑡 ...𝛽𝑀𝑅
𝐽𝑡−1 ,𝑡

]′,

𝜖𝑖,𝑡 = 𝛥𝐼𝑉𝑖,𝑡 − (𝛼̃𝑀𝑅
𝑡 +

𝐽𝑡−1
∑

𝑗=1
𝛽𝑀𝑅
𝑗,𝑡

̂𝛥𝐼𝑉 (𝑗)
𝑖,𝑡|𝑡−1),

‖𝐵̃𝑀𝑅
𝑡 ‖1 =

𝐽𝑡−1
∑

𝑗=1
|𝛽𝑀𝑅

𝑗,𝑡 |,

(7)

where 𝜆 is a regularization parameter that shrinks the estimates, and Eq. (6) reduces to the familiar WLS and OLS (when 𝜔 = 1)
regression when 𝜆 = 0. The LASSO selects variables by the second penalty term with a sufficiently large 𝜆 and allows for shrinkage to
zero. We choose 𝜆 in Eq. (6) to shrink the slope estimates by the Hurvich and Tsai (1989) corrected version of the Akaike information
criterion (AIC). The LASSO combination forecast is therefore the average of the individual forecasts selected by the LASSO in Eq. (6).

2.3. Hypotheses

Using the subsets of fundamentals we chose using the LASSO approach, we can test whether the firm fundamentals influence
the IV curve of the firm’s equity options by examining the following three null hypotheses.

• Hypothesis 1: The IV level, smile, smirk, or skew are unrelated to the firm’s fundamentals.
• Hypothesis 2: The inclusion of firm fundamentals does not provide any economic benefit to the IV level or shape portfolios.
• Hypothesis 3: Firm fundamentals are unrelated to the option expectations or overreaction puzzles.

Duan and Wei (2009) and others find that the risk-neutral skewness and kurtosis impact a firm’s equity option IV curve.
Given this, we first establish a benchmark model by controlling for the historical volatility (HV), risk-neutral skewness (NS), and
kurtosis (NK). The latter two are calculated using the Bakshi, Kapadia, and Madan (BKM) framework (Bakshi et al., 2003). Denoting
𝑀 = (𝐻𝑉 ,𝑁𝑆,𝑁𝐾), we consider the following benchmark model:

𝐼𝑉 𝑖
𝑗𝑡 = 𝛼𝑡 + 𝛽0,𝑡𝑀𝑗𝑡 + 𝜖𝑖𝑗𝑡, 𝑖 = ◦, 𝑠, 𝑐, (8)

where 𝑗 denotes the corresponding variables for firm 𝑗, 𝑖 represents the IV level, slope, and curvature, respectively.
Duan and Wei (2009) find that systematic risk, defined as the proportion of systematic variance in the total variance, influences

the shape of the IV function of individual equity options. We denote the systematic risk ratio 𝑆𝑦𝑠, measured as the explanatory power
R2 of the CAPM model 𝑟𝑗𝑡 = 𝛼𝑗 + 𝛽𝑗𝑟𝑚𝑡 + 𝜖𝑗𝑡, where 𝑟𝑗𝑡 and 𝑟𝑚𝑡 are returns for stock 𝑗 and the market. With the firm fundamental
measure vector 𝐹 , we analyze the following cross-sectional regression models for the IV shape on each date 𝑡:

𝐼𝑉 𝑖
𝑗𝑡 = 𝛼𝑡 + 𝛽1,𝑡𝐹𝑗𝑡 + 𝜖𝑖𝑗𝑡, (9)

𝐼𝑉 𝑖
𝑗𝑡 = 𝛼𝑡 + 𝛽0,𝑡𝑀𝑗𝑡 + 𝛽1,𝑡𝐹𝑗𝑡 + 𝜖𝑖𝑗𝑡, (10)

𝐼𝑉 𝑖
𝑗𝑡 = 𝛼𝑡 + 𝛽0,𝑡𝑀𝑗𝑡 + 𝛽1,𝑡𝐹𝑗𝑡 + 𝛽2,𝑡𝑆𝑦𝑠𝑗𝑡 + 𝜖𝑖𝑗𝑡. (11)

To test Hypothesis 1, we run the above regressions and examine whether the coefficient 𝛽1,𝑡 is significantly different from zero. To
test Hypothesis 2, we explore whether these fundamentals are economically useful in predicting the change in the IV curve by using
a set of delta-neutral option trading strategies based on the regression results from Eqs. (8)–(11). To test Hypothesis 3, we examine
whether the volatility estimates obtained from Eqs. (8)–(11) exceed the physical volatility for the expectation puzzle and whether
the long-term IV overreacts to changes in the short-term IV for the overreaction puzzle, following Stein (1989) and Christoffersen
5

et al. (2013).
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Table 2
Summary statistics of IV curve and firm fundamentals.

Characteristics Mean Sd Min Max 25% 75%

Panel A: IV characteristics and benchmark variables

Level 0.43 0.25 0.01 2.99 0.26 0.52
Slope 0.08 0.15 −2.50 2.66 0.02 0.10
Curvature 0.06 0.12 −2.28 1.96 0.01 0.09
HV 0.40 0.22 0.05 5.38 0.25 0.50
NS −0.47 0.74 −5.92 8.88 −0.82 −0.12
NK 5.11 2.33 0.38 55.63 3.45 6.17
Sys 0.25 0.16 0.00 0.86 0.12 0.35

Panel B: Representative firm fundamentals

ill 0.00 0.92 −0.48 21.60 −0.30 0.00
beta 0.00 1.00 −2.68 4.70 −0.71 0.58
mve 0.00 0.92 −2.69 2.36 −0.59 0.51
dy 0.00 0.91 −0.89 7.16 −0.66 0.19
stdcf 0.00 0.82 −0.29 20.93 −0.16 0.00
sue 0.00 0.91 −15.25 12.02 −0.01 0.11
rd_sale 0.00 0.68 −0.26 17.43 −0.18 0.00
sfe 0.00 0.89 −17.12 5.84 0.00 0.23
idiovol 0.00 1.00 −1.87 6.69 −0.73 0.46
roavol 0.00 0.89 −0.69 9.58 −0.45 0.00
depr 0.00 0.90 −1.37 9.78 −0.49 0.00
nanalyst 0.00 0.92 −1.64 4.26 −0.68 0.37
std_turn 0.00 0.92 −1.21 8.09 −0.50 0.00

This table reports the sample statistics of the firm fundamental and IV curve characteristics from monthly put options of U.S. firms
that have options actively traded between January 1996 and December 2019. Statistics includes pooled average (Mean), pooled
standard deviation (Sd), min value (Min), max value (Max), 25th percentile value (25%) and 75th percentile value (75%). Panel
A reports the statistics for the IV characteristics and the historical volatility (HV), risk-neutral skewness (NS), kurtosis (NK), and
systematic ratio (Sys). Panel B reports the statistics for the representative firm fundamentals chosen using the LASSO approach.
We use the cross-sectional mean and standard deviation to standardize the observations for each fundamental for each month
following Green et al. (2017).

Panel A of Table 2 provides the summary statistics of put options’ IV curve characteristics. Statistics are calculated on the pooled
ata of all observations. The ATM put option IV has a pooled average of 43%; the pooled averaged IV slope and IV curvature are
ositive, indicating that the put option IV curve indeed smiles.

. Empirical results

In this section, we report the results for Hypotheses 1–3. First, we report the number of relevant fundamentals selected using the
ASSO approach, then we demonstrate the relation between the cross-sectional variation in the IV shapes and firm fundamentals.
ubsequently, we construct an option trading strategy to compare the economic significance with and without fundamentals. Finally,
e show whether the inclusion of fundamentals improves the understanding of option puzzles.

.1. Number of relevant fundamentals

Table 3 reports the Fama–MacBeth (FM) regression results for cross-sectional put option IV characteristics forecasts of the 94
ndividual firm fundamentals. We first run a univariate regression of realized IV characteristics on forecasted IV characteristics
ross-sectionally, then we estimate the time series averages of the slope coefficients and R2, with 𝑡-statistics adjusted by Newey and

West (1987) standard errors with 12 lags; 14, 15, and 9 out of 94 fundamentals are significant at the 10% level for predicting the
changes of IV levels, slopes, and curvatures, respectively.

The LASSO approach allows us to gauge how the number and nature of relevant firm fundamentals evolve over time. Fig. 1
presents the ten-year moving average of the number of fundamentals selected by the LASSO approach. On average, the number of
selected fundamentals is stable over time, the average number of selected fundamentals is 26 for the IV levels, and is 9 for both
the IV slopes and curvatures. We also notice the number has gradually increased in recent years, suggesting that fundamentals have
started to play more important roles in predicting the changes of IV characteristics out-of-sample.

Table 4 reports the selection frequencies by the LASSO. On average, the selection frequency is 27.44%, 9.62%, and 9.32% for
the IV levels, slopes, and curvatures, respectively. Focusing on the IV levels, the largest (smallest) selection frequency is 55.94%
(12.24%), and the median frequency is 25.70%, indicating that most of the firm fundamentals matter over time, although their
behavior varies. The top ten fundamentals in terms of selection frequencies all exceed 39%, they are beta (beta), 56%; illiquidity
(ill), 50%; share turnover (turn), 49%; R&D to sales (rd_sale), 46%; bid–ask spread (baspread), 43%; size (mve), 43%; cash flow
volatility (stdcf), 43%; scaled earnings forecast (sfe), 42%; zero trading days (zerotrade), 41%; and volatility of share turnover
(std_turn), 40%. Five of them are related to the stock market liquidity (ill, turn, baspread, zerotrade, std_turn), three of them are
6
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Table 3
FM regression results for cross-sectional IV characteristics forecasts of firm fundamentals.

Fundamental Level Slope Curvature

Coeff 𝑡-stat R2 Coeff 𝑡-stat R2 Coeff 𝑡-stat R2

absacc −2.38* −1.64 0.23% −0.38 −0.58 0.13% −1.55 −1.56 0.12%
acc 0.79 0.36 0.17% 0.74 1.31 0.10% −5.42 −1.36 0.09%
aeavol −0.44 −0.54 0.21% 1.64 0.79 0.09% −2.09 −1.15 0.11%
age 1.25* 1.82 0.39% 0.68 0.81 0.13% −2.09 −1.38 0.13%
agr 3.40 0.71 0.25% 0.33 0.35 0.09% 0.93 0.92 0.12%
baspread 0.00 0.00 1.14% 0.31 0.23 0.21% 0.86 1.60 0.20%
beta −1.90 −1.37 1.29% 0.62 1.10 0.21% 3.18 0.76 0.20%
bm 0.07 0.10 0.27% 5.18 0.97 0.12% −0.39 −0.56 0.14%
bm_ia 0.66 1.18 0.15% −0.15 −0.09 0.11% 0.22 0.24 0.12%
cash −0.38 −0.53 0.54% 9.68 0.65 0.14% 2.88 0.56 0.15%
cashdebt −5.58 −1.10 0.30% −1.90* −1.70 0.11% −1.78 −1.32 0.10%
cashpr −3.74 −0.79 0.10% 1.08 0.93 0.08% −0.57 −0.85 0.07%
cfp −0.43 −0.74 0.29% −0.71 −0.59 0.15% 1.11 0.51 0.13%
cfp_ia 1.24 0.71 0.21% −1.98* −1.70 0.15% 0.50 0.85 0.12%
chatoia −0.92 −1.07 0.10% −0.81*** −2.76 0.08% −25.12 −1.10 0.10%
chcsho 3.94** 2.07 0.20% 13.81 1.05 0.08% −0.56 −1.04 0.08%
chempia 4.89 1.21 0.13% 2.30 0.99 0.10% −1.10 −0.35 0.09%
chfeps −2.43* −1.82 0.14% 0.68 0.49 0.10% −40.00 −1.08 0.10%
chinv −3.67 −1.10 0.12% −5.77 −0.89 0.09% −0.45 −1.32 0.08%
chmom −1.04 −0.64 0.34% −0.49 −0.80 0.12% −0.48 −1.26 0.13%
chnanalyst 0.29 0.45 0.10% −0.53 −1.45 0.06% 3.51 1.00 0.07%
chpmia 3.51 0.88 0.15% −1.54 −1.38 0.08% −0.74 −0.43 0.10%
chtx 0.01 0.01 0.19% −1.02 −1.40 0.08% −0.61*** −2.47 0.10%
cinvest 7.06 0.90 0.18% −1.59 −0.84 0.11% 2.24 0.78 0.09%
convind 0.82 0.64 0.16% 2.22 1.04 0.07% 0.97 0.46 0.09%
currat 1.49 0.75 0.18% −1.14 −1.47 0.13% −26.34 −1.04 0.11%
depr −1.05 −1.11 0.26% −1.01*** −2.45 0.14% 34.85 1.09 0.15%
disp −2.88 −1.47 0.24% −3.37 −0.73 0.12% −1.17 −1.25 0.11%
divi 0.19 0.19 0.09% −0.33 −0.52 0.10% −0.88 −0.39 0.11%
divo −2.01* −1.83 0.15% −3.84** −2.23 0.08% −0.82 −0.70 0.09%
dy −0.01 0.00 0.31% −1.13** −2.22 0.18% −0.54 −1.12 0.15%
ear −0.20 −0.11 0.13% −1.65 −1.52 0.09% −8.41 −0.82 0.09%
egr −0.47 −1.17 0.23% −2.83*** −2.43 0.09% 4.65 0.95 0.11%
ep 0.69 1.05 0.33% −6.14 −1.12 0.14% 2.41 0.56 0.13%
fgr5yr −26.59 −0.77 0.54% −0.49 −0.37 0.14% −0.07 −0.12 0.14%
gma −2.10 −0.86 0.22% −0.82 −0.48 0.10% 0.48 0.68 0.09%
grcapx −2.33 −1.01 0.18% 0.68 0.33 0.07% −0.28 −0.66 0.10%
grltnoa 1.41 0.61 0.10% −0.54 −0.29 0.08% −0.42 −0.45 0.10%
herf −0.21 −0.20 0.11% 0.25 0.45 0.07% −2.81 −1.48 0.07%
hire 4.56 1.18 0.22% 0.48 0.32 0.10% −0.43 −0.76 0.11%
idiovol 0.17 0.28 1.17% −0.01 −0.03 0.27% −0.54 −1.10 0.22%
ill −0.42 −0.31 0.50% −3.05 −0.91 0.22% −0.66 −1.08 0.23%
indmom −0.26 −0.24 0.29% −1.30** −2.06 0.10% −0.16 −0.30 0.12%
invest −0.96** −2.14 0.16% −1.42* −1.79 0.08% 1.69 0.63 0.09%
IPO 1.21 1.32 0.15% −0.85 −0.42 0.11% −5.99 −1.17 0.10%
lev −1.13* −1.85 0.32% 7.81 1.20 0.10% 3.16 1.03 0.10%
mom12m −5.51 −1.51 0.37% 0.43 1.24 0.12% 0.16 0.31 0.15%
mom1m −0.63 −0.33 0.43% 0.63 1.53 0.12% 0.66 1.06 0.16%
mom36m −3.13 −0.99 0.38% −2.06* −1.69 0.10% −2.77 −1.18 0.12%
ms −1.45 −0.72 0.18% −1.14 −1.26 0.10% −0.70 −0.31 0.09%
mve −1.11 −0.73 0.53% 57.38 1.02 0.24% 5.08 1.53 0.17%
mve_ia −1.72 −1.55 0.32% 0.07 0.19 0.16% 1.09 1.28 0.12%
nanalyst 6.61 1.21 0.36% 0.76 0.89 0.21% −0.87 −1.08 0.15%
nincr 0.46 0.49 0.13% −0.60 −0.72 0.09% 14.80 1.34 0.08%
operprof 61.49 0.69 0.11% −0.05 −0.04 0.11% −1.02 −0.75 0.10%
orgcap −0.64 −0.42 0.13% 0.29 0.24 0.08% −6.42 −1.23 0.08%
pchcapx_ia −0.55 −0.82 0.16% −0.51 −1.28 0.07% 7.13 0.73 0.09%
pchcurrat −5.78 −0.92 0.13% −0.52 −1.04 0.09% 0.35 0.34 0.11%
pchdepr −0.25 −0.53 0.15% −0.06 −0.17 0.10% −0.89 −0.69 0.08%
pchgm_pchsale −0.69 −0.79 0.15% −0.51 −1.11 0.08% 1.31 1.25 0.11%
pchsale_pchinvt 2.68 1.21 0.11% 0.33 0.26 0.09% 3.25 0.89 0.10%
pchsale_pchrect 29.18 1.02 0.17% 0.23 0.39 0.11% 109.71 1.02 0.10%
pchsale_pchxsga 0.08 0.19 0.14% 1.23 0.73 0.08% −3.92* −1.65 0.09%
pchsaleinv 0.26 0.39 0.14% −0.96 −0.56 0.10% −0.30 −0.35 0.09%

(continued on next page)
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Table 3 (continued).
Fundamental Level Slope Curvature

Coeff 𝑡-stat R2 Coeff 𝑡-stat R2 Coeff 𝑡-stat R2

pctacc −1.37 −0.89 0.09% −2.16 −0.89 0.12% −46.86 −1.07 0.10%
pricedelay 1.04 0.75 0.12% −0.81** −2.07 0.10% −0.46 −1.63 0.10%
ps 0.20 0.30 0.14% −8.11 −1.35 0.10% 0.65 0.40 0.09%
rd 3.30 0.92 0.15% −2.21 −1.27 0.10% 0.25 0.33 0.10%
rd_mve 1.41 0.38 0.29% −0.36 −0.45 0.13% −0.79 −1.10 0.13%
rd_sale 0.12 0.15 0.39% 0.42 0.58 0.09% −1.82* −1.78 0.10%
realestate −3.42 −0.87 0.14% −0.28 −0.68 0.08% 0.27 0.32 0.11%
retvol −0.51 −0.50 1.27% −0.38 −1.14 0.27% 0.19 0.09 0.21%
roaq 0.02 0.03 0.28% −0.22 −0.35 0.12% 4.14* 1.72 0.13%
roavol −0.30 −0.40 0.43% 1.34 0.73 0.16% 1.27 1.16 0.15%
roeq 8.62 1.05 0.23% −0.93*** −3.31 0.11% −0.93 −0.65 0.10%
roic 0.63* 1.65 0.34% −3.39** −2.28 0.11% −4.66*** −2.34 0.11%
rsup −3.06* −1.70 0.15% −1.28*** −2.88 0.09% 0.55 1.03 0.09%
salecash −0.94* −1.67 0.13% −0.53 −0.44 0.10% −1.29** −2.25 0.10%
saleinv −0.97 −1.14 0.09% 0.91 0.60 0.10% 1.27 0.86 0.11%
salerec −1.06*** −2.52 0.13% 0.79 1.09 0.09% −10.49 −0.99 0.10%
secured 0.38 0.81 0.23% −1.32 −0.30 0.09% −0.81 −0.40 0.09%
securedind −0.91 −0.96 0.14% −0.53 −1.17 0.10% 0.55 0.26 0.10%
sfe −0.24 −0.72 0.33% −0.14 −0.11 0.14% −0.41 −0.21 0.14%
sgr 0.56 1.00 0.24% −1.09 −1.04 0.09% −9.15 −1.31 0.11%
sin −0.38 −1.08 0.10% −0.78 −1.25 0.06% 0.27 0.35 0.07%
sp 1.63 0.67 0.18% 0.33 0.31 0.10% −0.70* −1.75 0.08%
std_dolvol 0.14 0.46 0.35% −0.04 −0.06 0.14% −1.24** −2.27 0.11%
std_turn 5.20 1.49 0.66% −0.22 −0.47 0.12% −0.71 −0.94 0.13%
stdcf −0.88*** −2.48 0.41% −254.98 −1.06 0.11% −1.08*** −2.59 0.12%
sue −5.12** −2.01 0.23% −13.06 −0.98 0.14% 0.38 0.65 0.11%
tang −0.21 −0.18 0.34% 0.54 0.60 0.09% −0.56 −0.52 0.11%
tb 6.04 1.54 0.09% −0.29 −0.92 0.10% 0.67 1.02 0.09%
turn −2.46* −1.79 0.99% −0.55 −0.89 0.17% −10.76 −1.35 0.18%
zerotrade 0.29 0.43 0.61% −1.68*** −2.36 0.22% −1.37 −1.10 0.18%

This table reports FM regression results for cross-sectional IV curve characteristics forecasts of 94 individual firm fundamentals. We first run univariate regression
of realized on forecasted IV characteristics cross-sectionally, then we estimate the time-series averages of the slope coefficients and R2, with 𝑡-statistics adjusted
by Newey and West (1987) standard errors with 12 lags, respectively for the changes of IV levels, slopes and curvatures. *, **, and *** indicate significance at
the 10%, 5%, and 1% levels, respectively.

Fig. 1. Ten-year rolling averages of number of fundamentals selected by the LASSO. This figure shows the ten-year moving average of the number of fundamentals
selected by the LASSO approach. The solid-, dashed- and dotted-line is for the changes of IV levels, slopes and curvature, respectively.

directly associated with a firm’s activity (rd_sale, stdcf, sfe), and the other two are about valuation (beta, mve), indicating the crucial
roles of fundamentals in determining the magnitude of a firm’s option IV.

In predicting the changes of IV slopes and IV curvatures, the top ten fundamentals in terms of selection frequencies all exceed
3%. The top fundamentals for the IV slopes are zero trading days, 24%; size, 21%; illiquidity, 21%; dividend-price ratio (dy),
9%; unexpected quarterly earnings (sue), 16%; Beta, 15%; number of analysts covering stock (nanalyst), 15%; earnings volatility
roavol), 15%; depreciation/PP&E (depr), 14%; and idiosyncratic return volatility (idiovol), 14%. The top fundamentals for the IV
urvatures are illiquidity, 19%; zero trading days, 19%; size, 18%; Beta, 17%; industry-adjusted size: (mve_ia), 16%; idiosyncratic
eturn volatility, 15%; unexpected quarterly earnings, 15%; dividend-price ratio, 14%; number of analysts covering stock, 14%; and
ash flow volatility, 13%.
8
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Table 4
LASSO selection frequencies for IV characteristics.

Fundamental Level Slope Curvature Fundamental Level Slope Curvature

absacc 28.32% 13.64% 11.89% mom1m 38.11% 8.39% 12.59%
acc 25.17% 9.79% 8.04% mom36m 31.82% 8.74% 6.99%
aeavol 33.22% 10.49% 10.14% ms 26.92% 7.69% 6.64%
age 35.66% 11.19% 9.09% mve 43.36% 21.33% 18.18%
agr 22.03% 4.90% 3.50% mve_ia 29.37% 12.24% 15.73%
baspread 43.36% 10.14% 11.19% nanalyst 28.67% 14.69% 13.64%
beta 55.94% 14.69% 17.13% nincr 17.13% 9.09% 8.04%
bm 24.13% 6.99% 9.09% operprof 18.88% 10.84% 8.39%
bm_ia 15.73% 7.69% 9.44% orgcap 20.63% 6.99% 6.29%
cash 33.92% 7.69% 7.69% pchcapx_ia 24.48% 3.85% 7.34%
cashdebt 31.12% 9.44% 9.44% pchcurrat 20.28% 7.69% 7.69%
cashpr 13.64% 6.64% 5.94% pchdepr 27.27% 9.44% 9.79%
cfp 19.93% 9.09% 9.09% pchgm_pchsale 23.08% 9.44% 10.14%
cfp_ia 19.58% 9.44% 10.49% pchsale_pchinvt 14.69% 7.69% 11.89%
chatoia 18.18% 9.44% 6.99% pchsale_pchrect 33.57% 12.59% 11.19%
chcsho 18.53% 7.34% 4.20% pchsale_pchxsga 22.03% 6.64% 7.69%
chempia 18.53% 8.04% 7.69% pchsaleinv 20.63% 8.04% 6.99%
chfeps 23.08% 6.64% 7.34% pctacc 22.03% 9.09% 9.44%
chinv 15.38% 7.34% 8.04% pricedelay 24.48% 10.49% 11.54%
chmom 32.87% 11.19% 12.24% ps 18.53% 6.99% 8.39%
chnanalyst 12.24% 2.45% 3.50% rd 19.93% 6.64% 7.34%
chpmia 27.97% 7.69% 10.49% rd_mve 38.46% 11.89% 12.24%
chtx 25.52% 4.90% 6.64% rd_sale 46.15% 11.89% 8.74%
cinvest 32.17% 11.54% 6.99% realestate 21.33% 8.39% 8.74%
convind 23.08% 5.24% 5.94% retvol 31.12% 10.14% 4.55%
currat 20.98% 13.64% 11.19% roaq 26.57% 8.74% 8.04%
depr 34.97% 14.34% 9.79% roavol 34.97% 14.69% 10.49%
disp 30.77% 10.84% 12.24% roeq 32.87% 8.74% 7.69%
divi 19.93% 11.89% 12.24% roic 38.81% 8.04% 7.69%
divo 24.48% 10.14% 7.69% rsup 28.32% 10.14% 8.74%
dy 37.41% 19.23% 13.99% salecash 12.24% 10.14% 8.39%
ear 21.68% 9.44% 8.04% saleinv 16.08% 9.44% 11.19%
egr 20.98% 6.29% 6.29% salerec 27.97% 9.44% 8.04%
ep 32.52% 8.74% 9.09% secured 22.73% 6.99% 5.59%
fgr5yr 31.12% 9.09% 8.74% securedind 23.43% 9.44% 6.99%
gma 26.22% 5.94% 7.34% sfe 41.96% 12.59% 11.89%
grcapx 25.87% 5.59% 7.69% sgr 28.67% 6.64% 7.34%
grltnoa 12.24% 5.24% 7.34% sin 18.88% 6.29% 5.94%
herf 15.38% 5.94% 4.55% sp 21.33% 9.09% 6.29%
hire 24.13% 6.29% 5.24% std_dolvol 37.41% 11.54% 10.84%
idiovol 33.92% 13.99% 15.38% std_turn 39.86% 7.69% 9.09%
ill 50.35% 20.63% 18.53% stdcf 43.01% 13.64% 13.29%
indmom 33.57% 7.69% 8.04% sue 36.36% 16.08% 14.69%
invest 19.23% 1.40% 4.20% tang 19.58% 4.55% 7.34%
IPO 25.17% 13.99% 12.94% tb 13.64% 9.09% 8.39%
lev 34.62% 8.74% 11.19% turn 49.30% 12.59% 12.94%
mom12m 36.36% 10.49% 12.24% zerotrade 41.26% 24.13% 18.53%

This table reports the LASSO selection frequencies for firm fundamentals in cross-sectional regressions. We first estimate a cross-sectional univariate regression
of IV curve characteristics in month 𝑡 on each of 94 firm fundamentals in month 𝑡−1, then we generate forecasts for month 𝑡+1 with the fitted OLS coefficients
and the fundamentals in month 𝑡. We estimate a cross-sectional multiple regression with the LASSO to select out those individual fundamentals to be included
in combination forecasts, respectively, for the changes of IV levels, slopes, and curvatures.

Interestingly, the common fundamentals that drive the IV curves are related to the market liquidity (ill, zerotrade) and valuation
(beta, mve), while those fundamentals that affect the IV skew or smirk are associated with a firm’s activity (dy, sue), idiosyncratic
volatility (idiovol), and attention from analysts (nanalyst). Overall, Fig. 1 and Table 4 indicate that firm fundamentals matter
in predicting the cross-sectional equity IV curves over time. Therefore, we use 13 fundamentals chosen by the LASSO approach
representing the top ten variables for the IV levels, slopes, and curvatures for our subsequent analysis: illiquidity, beta, size, dividend-
price ratio, cash flow volatility, unexpected quarterly earnings, R&D to sales, scaled earnings forecast, idiosyncratic return volatility,
earnings volatility, depreciation, number of analysts covering stock, and volatility of share turnover.6 Panel B of Table 2 provides the
summary statistics of those firm fundamentals. Statistics are calculated on the pooled data of all observations, which are standardized
by the cross-sectional mean and standard deviation.

6 The variables ill, zerotrade, turn, and baspread all measure a firm’s stock liquidity, so we use ill to represent liquidity; similarly, we use mve to represent
ize as both mve and mve_ia measure a firm’s size. In our robustness tests, we use a Bayesian shrinkage regression to address the concern about possible
9

ulticollinearity among firm fundamentals.



Journal of Financial Markets xxx (xxxx) xxxD. Chen et al.

E
a
r

3.2. IV shapes and firm fundamentals

We assess the explanatory power of firm fundamentals on its equity option IV curve shapes by four sets of regressions using
qs. (8)–(11). First, we run the cross-sectional regressions on each month and obtain the intercept and other coefficients. Then, we
verage the coefficients and calculate the corresponding t-statistics using Newey–West standard errors with 12 lags. We report the
esults for 𝐼𝑉𝐴𝑇𝑀 , 𝐼𝑉𝑂𝑇𝑀 − 𝐼𝑉𝐴𝑇𝑀 , and (𝐼𝑉𝐼𝑇𝑀 + 𝐼𝑉𝑂𝑇𝑀 )∕2 − 𝐼𝑉𝐴𝑇𝑀 to represent the level, slope, and curvature, respectively, of

the IV shape.
Table 5 provides the regression results, together with the estimates for:

𝐼𝑉 𝑖
𝑗𝑡 = 𝛼𝑡 + 𝛽0,𝑡𝑀𝑗𝑡 + 𝛽2,𝑡𝑆𝑦𝑠𝑗𝑡 + 𝜖𝑖𝑗𝑡, (12)

as in the study of Duan and Wei (2009). For the volatility level, our benchmark model performs well; at the 1% significance
level, the historical volatility and the skewness are positively significant, and the kurtosis is negatively significant. Among the
firm fundamentals, the illiquidity, beta, cash flow volatility, R&D to sales, idiosyncratic return volatility, earnings volatility,
depreciation, number of analysts covering stock, and volatility of share turnover are positively significant, while the size and scaled
earnings forecast are negatively significant. The findings suggest that a firm with a poor liquidity, larger beta, more attention from
analysts, smaller predicated earnings, smaller size, and so on is associated with a larger IV. The sign and significance of these firm
fundamentals remain similar after controlling for the risk-neutral skewness and kurtosis in Bakshi et al. (2003) and with the inclusion
of the systematic risk ratio in Duan and Wei (2009). The systematic risk ratio is negatively related to the volatility level, indicating
that a lower systematic risk ratio leads to a higher level of IV. The adjusted R2 shows that the addition of firm fundamentals
contributes to a robust explanation of the cross-sectional differences in the level of IVs. It increases from 61.87% to 69.20% after
the fundamentals are included in the regression, while the addition of the systematic risk ratio to the benchmark leads to a much
smaller magnitude.

For the volatility slope, all the historical volatility, skewness, and kurtosis are strongly significant in explaining the volatility
difference between the OTM and ATM options. Nevertheless, both the significance and sign of the historical volatility change after
the inclusion of firm fundamentals, suggesting that its role may be subsumed by fundamentals. The coefficients of the dividend-
price ratio and scaled earnings forecast are positively significant, while the coefficient estimates are negative for the illiquidity, size,
unexpected quarterly earnings, earnings volatility, and volatility of share turnover. The findings suggest that these fundamentals
perform differently when determining the volatility shape. For instance, a smaller firm suffers different downside and upside risks,
resulting in a steeper volatility slope. Controlling for the systematic risk ratio does not change the performance of fundamentals, and
a smaller amount of systematic risk leads to a steeper IV, consistent with the findings of Duan and Wei (2009). Again, the adjusted
R2 significantly increases from 18.85% to 21.46% as a result of incorporating firm fundamentals to the benchmark model.

A significantly larger volatility curvature is observed for firms with a smaller beta, size, unexpected quarterly earnings, and for
firms with a larger dividend-price ratio, R&D to sales, and earnings forecast. The systematic risk ratio is significant in explaining
the curvature. The firm fundamentals improve the adjusted R2 from 10.98% to 12.73%. These findings reveal the relationships
between firm fundamentals and the level, slope, and curvature of the IV. Generally, firms with poorer liquidity, smaller earning
forecast, larger earnings volatility, or more analysts covering stock have a significantly higher volatility level, flatter volatility
slope, and less pronounced curvature; smaller size firms have a higher volatility level, steeper volatility slope, and more pronounced
curvature. These findings are largely consistent after controlling for the risk-neutral skewness, kurtosis, and systematic risk ratio.
Thus, these findings reject Hypothesis 1 and provide evidence that the level, smile, smirk, or skew of IV are associated with the
firm fundamentals. Particularly, the inclusion of fundamentals improves the explanation of the volatility slope and curvatures better
than that for the volatility level, suggesting the importance of firm fundamentals in understanding the IV shape.

3.3. Economic value

Equity options are not quoted and traded in terms of standardized deltas and time to maturities appearing in the Option Metrics
IV surface file. Therefore, we construct the option trading strategies using the actual market observed option price data from the
Option Metrics Option Prices file. Following Goyal and Saretto (2009), we apply several data filters to remove the following: (i)
options violating the no-arbitrage conditions; (ii) options with a bid price higher than the ask price; (iii) options with a zero bid
price; (iv) options with a bid–ask spread lower than the minimum tick size ($0.05 for options traded below $3 and $0.1 otherwise);
and (v) options with a zero open interest.

Then, we reformat the option price data to approximate the IV curve discussed in the previous section. On the last Wednesday
of each month, we select firms with put options maturing in six to seven weeks and having at least one option traded in each delta
range of −0.125 to −0.275, −0.425 to −0.575, or −0.725 to −0.875. We select one option from each of these delta ranges with the
highest liquidity (in terms of trading volume and open interest). If multiple options have the same liquidity level, we choose the
option having the lowest delta difference to −0.2, −0.5, or −0.8. To negate model fitting errors, an additional filter is applied to
remove months when less than 10 firms satisfy the sample selection criterion.

As we primarily examine the profitability owing to changes in the IV, we want to remove the changes in option prices due to
changes in the underlying price. We perform delta-hedging to the options by taking the delta amount of the underlying stock. At
time 𝑡, the delta-neutral long position of these put options is as follows:

𝜋(+,◦,−) = 𝑃 (+,◦,−) − 𝛿(+,◦,−)𝑆 , (13)
10
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Table 5
Regression results for put options.

Level Slope Curvature

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

HV (%) 75.91*** 21.97*** 21.63*** 73.72*** 3.65*** −2.23*** −1.24 3.24*** 3.23*** −0.05 0.75 2.90***
32.77 5.54 5.28 30.14 5.98 −2.90 −1.59 4.37 12.02 −0.08 1.37 9.04

NS (%) 1.28*** −0.01 0.01 1.07** −5.48*** −5.74*** −5.76*** −5.50*** −1.83*** −2.02*** −2.03*** −1.87***
4.48 −0.03 0.03 4.31 −13.73 −13.25 −13.26 −13.84 −7.12 −7.63 −7.64 −7.31

NK (%) −2.58*** −2.56** −2.56** −2.56*** 1.42*** 1.28*** 1.29*** 1.42*** 1.38*** 1.29*** 1.29*** 1.37***
−7.52 −10.27 −10.36 −7.82 13.08 9.73 9.82 13.24 18.07 15.27 15.48 18.65

ill (%) 1.37*** 1.02*** 1.01*** −0.75*** −0.39*** −0.36*** −0.66*** −0.42*** −0.39***
8.47 7.75 7.93 −4.43 −3.46 −3.25 −4.43 −3.89 −3.81

beta (%) 2.78*** 1.38*** 1.17*** 0.05 0.34*** 0.73*** −0.19*** 0.07 0.28***
6.85 4.00 3.76 0.56 3.41 5.98 −2.74 1.00 3.20

mve (%) −3.47*** −3.86*** −3.90*** −1.78*** −2.20*** −2.13*** −1.30*** −1.33*** −1.28***
−9.60 −12.02 −11.66 −5.69 −5.35 −5.34 −7.94 −6.14 −6.16

dy (%) 0.02 0.22*** 0.21*** 0.15*** 0.17*** 0.18** 0.35*** 0.28*** 0.28***
0.26 3.04 2.92 2.82 4.61 4.80 11.61 8.61 8.59

stdcf (%) 0.58*** 0.59*** 0.58*** 0.06 0.04 0.05 0.04 0.03 0.04
6.60 6.50 6.46 0.89 0.80 1.00 1.24 0.93 1.19

sue (%) −0.08 −0.07 −0.07 −0.05** −0.06*** −0.05*** −0.06*** −0.05*** −0.05***
−1.13 −1.08 −1.05 −2.42 −2.86 −2.80 −3.14 −3.00 −2.90

rd_sale (%) 1.07*** 1.12*** 1.12*** 0.03 0.00 0.01 0.10** 0.08** 0.08**
8.72 9.20 9.28 0.49 0.06 0.20 2.39 1.97 2.13

sfe (%) −1.30*** −1.23*** −1.23*** 0.35*** 0.33*** 0.31*** 0.19*** 0.18*** 0.17***
−7.11 −6.61 −6.65 10.55 8.42 8.17 6.20 5.49 5.21

idiovol (%) 11.74*** 6.72*** 6.98*** −1.42*** 0.20 −0.38* −0.80*** 0.14 −0.21*
20.38 9.88 9.53 −5.64 1.01 −1.87 −5.06 1.29 −1.82

roavol (%) 1.17*** 1.03*** 1.03*** −0.43*** −0.23*** −0.24*** −0.14*** −0.01 −0.02
9.55 9.37 9.42 −5.00 −3.63 −3.78 −4.22 −0.39 −0.73

depr (%) 0.25*** 0.23*** 0.24*** −0.03 0.01 0.01 −0.02 0.00 0.01
5.02 4.82 4.91 −0.71 0.16 0.32 −1.03 0.15 0.35

nanalyst (%) 0.41*** −0.07 −0.05 −0.44*** 0.06 0.03 −0.27*** 0.07* 0.05
3.64 −0.68 −0.51 −2.73 0.77 0.40 −2.63 1.85 1.34

std_turn (%) 0.31*** 0.21** 0.22** −0.13** −0.16*** −0.17*** 0.06* 0.05* 0.05
3.28 2.30 2.33 −2.48 −3.67 −3.79 1.89 1.82 1.55

Sys (%) 0.82 −9.05*** −4.32*** −1.88** −2.53*** −2.34***
0.45 −2.79 −5.39 −2.07 −3.94 −4.41

Adj R2 (%) 61.87 66.33 69.20 69.24 62.46 18.85 4.22 21.46 21.54 19.05 10.98 3.47 12.73 12.78 11.17

This table reports the cross-sectional regressions results, regressing IV function characteristics on realized volatility, implied moments, fundamental measures, and systematic risk ratio:
𝐼𝑉 𝑖

𝑗𝑡 = 𝛼𝑡 + 𝛽0,𝑡𝑀𝑗𝑡 + 𝛽1,𝑡𝐹𝑗𝑡 + 𝛽2,𝑡𝑆𝑦𝑠𝑗𝑡 + 𝜖𝑖𝑗𝑡 ,

here 𝐼𝑉 𝑖
𝑗𝑡 represents one of the level, slope and curvature of the IV function captured by 𝐼𝑉𝐴𝑇𝑀 , 𝐼𝑉𝑂𝑇𝑀 −𝐼𝑉𝐴𝑇𝑀 , and (𝐼𝑉𝐼𝑇𝑀 +𝐼𝑉𝑂𝑇𝑀 )∕2−𝐼𝑉𝐴𝑇𝑀 respectively. ITM, ATM, and OTM options

are with delta of −0.8, −0.5, and −0.2, respectively. Specification (1) is the benchmark model considering only 𝑀𝑗𝑡 , the vector containing historical volatility, risk-neutral skewness and kurtosis,
whilst specification (2) only considers firm fundamental vector 𝐹𝑗𝑡 . Specification (4) considers all the market and fundamental measures, as well as the systematic risk ratio 𝑆𝑦𝑠𝑗𝑡 . Specification (3)
and (5) are cases without the systematic risk ratio and the firm fundamental vector, respectively. On each month we first obtain the intercept and other coefficients, these coefficients are then
averaged and the corresponding 𝑡-statistic is calculated using the Newey–West standard errors with 12 lags. The sample period is from 1996 to 2019.

where 𝑃 (+,◦,−)
𝑡 and 𝛿(+,◦,−)𝑡 denote the put option prices and their corresponding deltas. We use these delta-hedged put positions as

building blocks to construct other delta-neutral option strategies approximating the IV curve:

𝜋𝑠
𝑡 = 𝜋−

𝑡 − 𝜋◦
𝑡 , (14)

𝜋𝑐
𝑡 =

(

𝜋+
𝑡 + 𝜋−

𝑡
2

)

− 𝜋◦
𝑡 . (15)

he option strategy (14) corresponds to an OTM-minus-ATM put spread, while the option strategy (15) corresponds to an ATM
utterfly.

We build portfolios of option strategies based on the difference between model estimated and market observed IV curve
haracteristics. For any particular IV curve characteristic, if its model estimated value is greater (smaller) than the market observed
alue, we invest in a long (short) position in its corresponding option strategy:

𝛱 𝑖
𝑡 =

𝐽
∑

𝑗=1
𝑤𝑖

𝑗,𝑡𝜋
𝑖
𝑗,𝑡, 𝑖 = ◦, 𝑠, 𝑐. (16)

n each trading date 𝑡, we normalize the weights 𝑤𝑖
𝑗,𝑡 for 𝐽 firms by the distance between the model estimated value 𝐼𝑉

𝑖
𝑗𝑡 and the

market observed value 𝐼𝑉 𝑖
𝑗𝑡:

𝑤𝑖
𝑗,𝑡 =

𝐼𝑉
𝑖
𝑗𝑡 − 𝐼𝑉 𝑖

𝑗𝑡

∑𝐽
𝑗=1

|

|

|

|

𝐼𝑉
𝑖
𝑗𝑡 − 𝐼𝑉 𝑖

𝑗𝑡
|

|

|

|

. (17)

We also construct equal-weighted portfolios for robustness, taking an equal amount of long (short) positions in the relevant option
strategies when the model estimated IV curve characteristics are higher (smaller) than their market observed counterparts.

We hold these portfolios for one month and analyze the portfolio performance by calculating the portfolio return as the weighted
average of returns from each firm:

𝛥𝛱 𝑖
𝑡 =

𝐽
∑

𝑤𝑖
𝑗,𝑡−1

𝜋𝑖
𝑗,𝑡 − 𝜋𝑖

𝑗,𝑡−1
𝑖 , 𝑖 = ◦, 𝑠, 𝑐. (18)
11

𝑗=1 𝜋𝑗,𝑡−1
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Table 6
Put option portfolios returns.

Panel A: Distance weighted

Level Slope Curvature

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

Mean (%) 19.00*** 22.94*** 21.22*** 21.30*** 19.09*** 8.87*** 10.69*** 9.35*** 9.21*** 8.83*** 3.69*** 4.08*** 3.95*** 3.91*** 3.68***
22.26 24.58 23.46 23.59 22.35 3.93 5.90 4.77 4.56 3.98 8.85 10.73 9.65 9.60 8.96

𝛥Mean (%) 3.94*** 2.22*** 2.29*** 0.08 1.82* 0.49 0.34 −0.03** 0.39** 0.26* 0.22 −0.01
8.71 5.93 6.06 0.64 1.88 0.60 0.38 −0.34 2.24 1.87 1.55 −0.16

IR 4.55 5.03 4.80 4.82 4.57 0.80 1.21 0.98 0.93 0.81 1.81 2.19 1.97 1.96 1.83
𝛥IR (%) 10.43 5.43 5.99 0.43 50.16 21.51 16.04 1.37 21.19 8.94 8.49 1.25

Panel B: Equal weighted

Level Slope Curvature

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

Mean (%) 3.00*** 5.55*** 4.53*** 4.65*** 3.11*** 0.26 1.26 1.63** 1.66** 0.44 0.47* 0.90*** 0.75*** 0.79*** 0.44*
6.09 12.02 10.02 10.42 6.38 0.29 1.58 2.15 2.18 0.48 1.69 3.56 3.02 3.10 1.65

𝛥Mean (%) 2.56*** 1.53*** 1.65*** 0.11 1.00 1.37** 1.40** 0.18 0.43** 0.28** 0.32*** −0.03
6.42 4.55 5.05 0.76 1.58 2.00 2.06 1.14 2.57 2.40 2.65 −0.46

IR 1.25 2.46 2.05 2.13 1.30 0.06 0.32 0.44 0.45 0.10 0.34 0.73 0.62 0.63 0.34
𝛥IR (%) 97.41 64.57 71.19 4.74 445.76 640.03 652.31 65.41 111.18 79.03 83.89 −2.19

This table reports the annualized mean returns generated from the delta-neutral put option portfolios, distance weighted in Panel A, and equal weighted in Panel B. 𝛥Mean reports the mean of
improvements over the benchmark model. Information ratio (IR) and IR improvement over the benchmark portfolio are also reported. Specification (1) is the benchmark model considering only the
vector containing historical volatility, risk-neutral skewness and kurtosis, whilst specification (2) only considers the firm fundamental vector. Specification (4) considers all the market and fundamental
measures, as well as the systematic risk ratio. Specification (3) and (5) are cases without the systematic risk ratio and the firm fundamental vector, respectively.

Table 6 reports the investment performance of portfolios constructed for ATM IV level, IV slope, and IV curvature. The economic
benefit of incorporating firm fundamentals is significant in most of our investment exercises. For the IV level, the benchmark portfolio
performs well, providing an annualized return of 19.00% and information ratios (IR), a risk-adjusted return measured by annualized
return over annualized standard deviation, of 4.55. While the systematic risk ratio can modestly improve the portfolio performance,
portfolios constructed using fundamentals perform significantly superior, increasing the IR ratio by 10.43%.

The IV slope and curvature portfolios incorporating firm fundamentals outperform those of the benchmark model in Eq. (8) and
of the model with only the systematic risk ratio, especially for the distance-weighted portfolio. For example, the slope and curvature
portfolios of the benchmark model generate annualized returns of 8.87% and 3.69% and IR ratios of 0.80 and 1.81, and the portfolios
with fundamentals increase significantly the returns to 10.69% and 4.08% and the IR ratios to 1.21 and 2.19, respectively.

Overall, the investment analysis using the quoted price of the options consolidates our finding in Section 3.2, providing consistent
evidence rejecting Hypothesis 2.

3.4. Reconciliation with option puzzles

In this subsection, we investigate the role of firm fundamentals in improving the understanding of two robust stylized facts and
option puzzles: the overreaction and expectations puzzles.

Stein (1989) documents a puzzle in options markets that the longer-term IV overreacts to changes in the shorter-term IV. We
follow Christoffersen et al. (2013) by using the 2-month and 1-month IVs with the following regression:

(𝐼𝑉 1𝑀
𝑡+1 − 𝐼𝑉 1𝑀

𝑡 ) − 2(𝐼𝑉 2𝑀
𝑡 − 𝐼𝑉 1𝑀

𝑡 ) = 𝛼0 + 𝛼1𝐼𝑉
1𝑀
𝑡 + 𝜖𝑡+1, (19)

where 𝐼𝑉 1𝑀 and 𝐼𝑉 2𝑀 denote the 1- and 2-month ATM IVs. If the overreaction exists, the regression coefficient 𝛼1 should be
significantly negative. We run the above regression for each firm, estimate the average of 𝛼1 and the corresponding t-statistics using
the Newey–West standard errors with 12 lags, and test the null hypothesis that 𝛼1 = 0 for the market observed IVs, and IVs generated
y the models with and without firm fundamentals, respectively.

Panel A of Table 7 reports the coefficient estimates, and Panel B reports the coefficient difference. We notice an overreaction;
ll models generate a significantly negative 𝛼1. Panel B reveals that relative to the model without fundamentals, the model with
undamentals generates a significantly larger 𝛼1, indicating that the inclusion of fundamentals moderates the overreaction. In other
ords, the incorporation of fundamentals holds significance and relates to the overreaction puzzle.

The other stylized fact is that, on average, the risk-neutral volatility exceeds the physical volatility owing to the negative price
f variance risk, examined by Bakshi and Kapadia (2003); hence, the short-sell straddles are profitable (Coval and Shumway,
001; Christoffersen et al., 2013). To test this puzzle, we hypothetically construct a short straddle strategy for each firm by using
0-day ATM call and put options and hold them for one month. The market observed and model estimated volatilities are used
o compute the option premium by the Black–Scholes formula, and the final return of the short straddle portfolio is the difference
etween the sum of call and put option premiums and |𝑆𝑇 −𝐾|. We restrain our investment of one dollar on each straddle position
nd estimate the equal-weighted average returns.

Panel A of Table 8 reports the straddle returns, and Panel B reports their difference. The straddle returns using market observed
nd model estimated volatilities are significantly larger than zero. This finding indicates that the expectations puzzle widely
cknowledged in index options also holds for individual options. The volatilities estimated with fundamentals generate significantly
maller straddle returns than those market observed and by the benchmark model.

Overall, our results demonstrate that the two stylized facts for index options are also true for individual options. The firm
12

undamentals help to understand both the overreaction and expectations puzzles and Hypothesis 3 is rejected.
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Table 7
Overreaction facts.

Panel A: Coefficient

Obs (1) (2) (3) (4) (5)

−0.290*** −0.412*** −0.386*** −0.391*** −0.389*** −0.409***
−38.94 −45.75 −45.91 −46.65 −47.03 −43.50

Panel B: Coefficient difference

(1)-obs (2)-obs (3)-obs (4)-obs (5)-obs

−0.121*** −0.096*** −0.100*** −0.098*** −0.116***
−15.91 −12.93 −14.39 −14.11 −15.08
(2)–(1) (3)–(1) (4)–(5)
0.025*** 0.020*** 0.017***
7.63 8.09 6.55

This table reports the result for:
(𝐼𝑉 1𝑀

𝑡+1 − 𝐼𝑉 1𝑀
𝑡 ) − 2(𝐼𝑉 2𝑀

𝑡 − 𝐼𝑉 1𝑀
𝑡 ) = 𝛼0 + 𝛼1𝐼𝑉 1𝑀

𝑡 + 𝜖𝑡+1 ,
where 𝐼𝑉 1𝑀 and 𝐼𝑉 2𝑀 denote the one- and two-month ATM IVs. We run the above regression for each firm, take the average
of 𝛼1, and then test the null hypothesis that 𝛼1 = 0 in Panel A. Panel B reports the coefficient difference between models and
market observations. Obs is for observed option data, specification (1) is the benchmark model considering only the vector
containing historical volatility, risk-neutral skewness and kurtosis, whilst specification (2) only considers the firm fundamental
vector. Specification (4) considers all the market and fundamental measures, as well as the systematic risk ratio. Specification
(3) and (5) are cases without the systematic risk ratio and the firm fundamental vector, respectively.

Table 8
Straddle returns using market and model volatilities.

Panel A: Average return

Obs (1) (2) (3) (4) (5)

0.419*** 0.419*** 0.421*** 0.416*** 0.413*** 0.422***
29.67 28.74 30.71 27.76 28.17 28.09

Panel B: Average return difference (%)

(1)-obs (2)-obs (3)-obs (4)-obs (5)-obs

0.043 0.148 −0.337* −0.410** 0.229
0.18 0.88 −1.72 −2.38 0.92
(2)−(1) (3)−(1) (4)−(5)
0.158 −0.444** −0.746***
0.82 −2.05 −4.52

This table reports the results for short straddles. We estimate the straddle returns for each firm, take the equal-weighted average
and then test its significance in Panel A. Panel B reports the coefficient difference between models and market observations. Obs
is for observed option data, specification (1) is the benchmark model considering only the vector containing historical volatility,
risk-neutral skewness and kurtosis, whilst specification (2) only considers the firm fundamental vector. Specification (4) considers
all the market and fundamental measures, as well as the systematic risk ratio. Specification (3) and (5) are cases without the
systematic risk ratio and the firm fundamental vector, respectively.

. Model

In this section, we use a compound option model to demonstrate the mechanism of how a firm’s fundamental information
nfluences the price of its equity options.

.1. Firm fundamentals and the IV curve

As a firm’s equity and debt can be viewed as contingent claims on firm value (Black and Scholes, 1973; Merton, 1974), the
ndividual equity options can be viewed as compound options on the underlying firm value, as in the study of Geske et al. (2016). If
irm fundamentals reflect the financial status of the firm and, ultimately, the evolution of the firm value process, these fundamentals
nd the uncertainties associated with them should be considered important determinants of the characteristics of the firm’s equity
ptions. We demonstrate this relation by extending the Geske (1977) model.7

We start with the Merton model assuming that the value of the firm, 𝑉 , satisfies the following stochastic differential equation
(SDE):

𝑑𝑉 = 𝛼𝑉 𝑑𝑡 + 𝜎𝑉 𝑑𝑊 − 𝑐𝑉 𝑑𝑡, (20)

7 In addition to the Geske (1977) model, Galai and Masulis (1976) also introduce a joint model combining capital asset and option pricing models. They
13

how the influence of unanticipated changes in capital and asset structures on the firm’s debt and equity.
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where 𝛼 is the expected rate of return of the firm per unit of time, 𝑐 is the firm’s financing cost per unit of time, 𝜎 is the volatility
of the firm value process, and 𝑊 is a standard Brownian motion. The financing cost comprises two components: dividend payments
to its shareholders 𝑐𝑒 and coupon/interest payments to the debt holders 𝑐𝑑 ,

𝑐𝑉 = 𝑐𝑒 + 𝑐𝑑 . (21)

Eqs. (20) and (21) relate the evolution of the firm value to its stability, expected profitability, dividend policy, and interest
obligations.

If a marketable security, 𝐹 , whose value is a function of firm value and time, 𝐹 = 𝑓 (𝑉 , 𝑡), it must be governed by, under no
arbitrage conditions,

𝑑𝐹 = 𝛼𝐹𝐹𝑑𝑡 + 𝜎𝐹𝐹𝑑𝑊𝐹 − 𝑐𝐹 𝑑𝑡, (22)

where 𝛼𝐹 is the expected rate of return of the security per unit of time, 𝑐𝐹 is the security’s payout per unit of time, and 𝜎𝐹 is the
volatility of the security value process. Merton (1974) shows that the value of 𝐹 must satisfy:

1
2
𝜎2𝑉 2𝐹𝑉 𝑉 + (𝑟 − 𝑐)𝑉 𝐹𝑉 − 𝑟𝐹 + 𝐹𝑡 + 𝑐𝐹 = 0. (23)

firm’s equity and equity options satisfy the same partial differential equation (23) but have different boundary conditions.
Now, we depart from the Merton (1974) framework and assume that firms can continue to operate their businesses under a

table capital structure. In other words, a firm cannot cease to exist at the maturity of its debt. However, it must repay its existing
ebt obligation by issuing new debt with a similar structure, such that a firm’s equity and debt only mature when the firm can no
onger secure new debt to cover its existing debt or when the firm cannot meet its interest payment obligations. On the one hand,
he firm’s potential debt investors will consider the firm’s fundamentals when making investment decisions. Hence, the fundamental
easures will influence the outcome of the firm’s new debt issuance. On the other hand, fundamental measures also indicate whether

he firm will face difficulties when making interest payments. Consistent with this, empirical evidence suggests that fundamental
easures are important determinants of credit risk (e.g., Collin-Dufresn et al., 2001; Bai and Wu, 2016). Therefore, we assume that

he time-to-maturity of the firm’s equity is a function of the firm’s credit-sensitive fundamental measures, 𝐝,

𝑇𝑒 = 𝑇 (𝐝). (24)

Conceptually, this provides a channel through which firm fundamentals (other than leverage and dividend) influence the prices
f equity and equity options. In this setting, the influence to the stock and option prices are driven by firm fundamentals’ influence
o 𝑇𝑒. Bai and Wu (2016) show that better interest coverage and liquidity and more profitable firms have higher creditworthiness,
nd are further away from a default. A sudden change in 𝑇𝑒 induced by the introduction of credit-sensitive information can induce
umps in equity prices, especially around earnings announcement dates (Dubinsky et al., 2019). As we focus on the cross-sectional
haracteristics differentiating firms with different sets of default sensitive information, we ignore the time variation of 𝐝 within each
irm to keep the model parsimonious and tractable.

Therefore, the value of the equity 𝑆(𝑉 , 𝑡) is governed by:
1
2
𝜎2𝑉 2𝑆𝑉 𝑉 + (𝑟 − 𝑐)𝑉 𝑆𝑉 − 𝑟𝑆 + 𝑆𝑡 + 𝑐𝑒 = 0, (25)

subject to the boundary condition:

𝑆(𝑉 , 𝑇𝑒) = (𝑉𝑇𝑒 − 𝐵)+, (26)

where 𝐵 denotes the principal of the firm’s overall debt obligation. Similarly, the value of the equity put option 𝑃 (𝑉 , 𝑡) maturing
at 𝑇𝑝 with strike price 𝐾 satisfies:

1
2
𝜎2𝑉 2𝑃𝑉 𝑉 + (𝑟 − 𝑐)𝑉 𝑃𝑉 − 𝑟𝑃 + 𝑃𝑡 = 0, (27)

ubject to the boundary condition:

𝑃 (𝑉 , 𝑇𝑝) = (𝐾 − 𝑆(𝑉 , 𝑇𝑝))+. (28)

e assume that 𝑇𝑒 > 𝑇𝑝 and 𝑐𝑒 grows at a constant rate of 𝑔. Under this assumption, the stock price at time 𝑡 can be expressed as:

𝑆𝑡 = ∫

𝑇𝑒−𝑡

0
𝑒−(𝑟−𝑔)𝑢𝑐𝑒𝑑𝑢 + 𝑒−𝑟(𝑇𝑒−𝑡) ∫

∞

𝐵
(𝑉𝑇𝑒 − 𝐵)+𝑓 (𝑉𝑇𝑒 |𝑡)𝑑𝑉𝑇𝑒

= (1 − 𝑒−(𝑟−𝑔)(𝑇𝑒−𝑡))
𝑐𝑒

𝑟 − 𝑔
+ 𝑒−𝑟(𝑇𝑒−𝑡) ∫

∞

𝐵
(𝑉𝑇𝑒 − 𝐵)+𝑓 (𝑉𝑇𝑒 |𝑡)𝑑𝑉𝑇𝑒 .

(29)

iewing the put option as a compound option on the firm value, its value can be determined by a modified (Geske, 1977) formula,

𝑃𝑡 =
(

𝑒−𝑟𝑇𝑝𝐾 − (𝑒−𝑟𝑇𝑝 − 𝑒−𝑟𝑇𝑒+𝑔(𝑇𝑒−𝑇𝑝))
𝑐𝑒

𝑟 − 𝑔

)

∫

𝑉

0
𝑓 (𝑉𝑇𝑝 |𝑉0)𝑑𝑉𝑇𝑝

− 𝑒−𝑟𝑇𝑒
𝑉 ∞

(𝑉𝑇 − 𝐵)𝑓 (𝑉𝑇 |𝑉𝑇 )𝑓 (𝑉𝑇 |𝑉0)𝑑𝑉𝑇 𝑑𝑉𝑇 ,

(30)
14
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where 𝑉 denotes 𝑉𝑇𝑝 , and it is the solution to:

(1 − 𝑒−(𝑟−𝑔)(𝑇𝑒−𝑡))
𝑐𝑒

𝑟 − 𝑔
+ 𝑒−𝑟(𝑇−𝑡) ∫

∞

𝐵
(𝑉𝑇𝑒 − 𝐵)+𝑓 (𝑉𝑇𝑒 |𝑉𝑡)𝑑𝑉𝑇𝑒 = 𝐾, (31)

with 𝑓 (𝑉𝑡2 |𝑉𝑡1 ) denoting the transition density of 𝑉 from 𝑡1 to 𝑡2 > 𝑡1,

𝑓 (𝑉𝑡2 |𝑉𝑡1 ) =
1

𝑉𝑡2𝜎
√

2𝜋(𝑡2 − 𝑡1)
exp

⎛

⎜

⎜

⎜

⎝

−1
2

⎛

⎜

⎜

⎝

ln(𝑉𝑡2∕𝑉𝑡1 ) − (𝑟 − 𝑐 − 1
2𝜎

2)(𝑡2 − 𝑡1)

𝜎
√

(𝑡2 − 𝑡1)

⎞

⎟

⎟

⎠

2
⎞

⎟

⎟

⎟

⎠

. (32)

The price of the call option can be derived in a similar fashion.
Notably, the equity price in Eq. (29) can be interpreted as the combination of the discounted dividends up to the firm’s default

and an option premium that gives the equity holder the right to default at time 𝑇𝑒. Given the solution for the equity put option
in Eq. (30), one may then calculate the put option prices across different strikes 𝐾. Subsequently, these option prices can be ported
back to the Black–Scholes formula for calculating the IV at each strike price.

To study the impact of fundamentals, we must determine how the IV curve changes with respect to the face value of the debt,
dividend payout, and the time to default. Despite the above option formulas, the effects can only be analyzed using numerical
simulations due to the need for inverting the Black–Scholes formula. Using 𝑉𝑡 = 100, 𝐵 = 65, 𝑟 = 0.01, 𝜎 = 0.2, 𝑇𝑒 = 5, 𝑇𝑝 = 0.25,
𝑐𝑒 = 1, 𝑐 = 0.025, and 𝑔 = 0.002 as the basis of the parameters, we first calculate the stock price using Eq. (29), and the option
rices using Eq. (30) for an equally spaced set of option moneyness, defined as 𝑚 = 𝐾

𝑆𝑡
, between 0.7 and 1.3. The stock price, option

prices, and relevant parameters are then plugged into the Black–Scholes formula to estimate the corresponding IV curve. A new IV
curve can be produced for, for example, a different dividend payout rate 𝑐𝑒 while holding other parameters fixed.

Note that the dividend growth rate controls the book-to-market ratio of the firm in our model when holding other model
arameters fixed. Therefore, it can be used to analyze the relation between the IV curve and the book-to-market ratio. For a given
ook-to-market ratio, we first solve 𝑔 using Eq. (29) while fixing the other parameters, the IV curve can then be calculated in the
ame fashion as discussed in the previous paragraph.

In Fig. 2, we plot the IV curve against moneyness showing the change in the IV curve with respect to changes in the dividend
ayout, time to default, face value of the debt, and book-to-market ratio. We also perform numerical differentiation to produce plots
or IV slope and curvature against option moneyness. Fig. 2 shows that our compound option model for option pricing can generate
V smirks, and it is scale invariant if the dividend payout is kept at a constant proportion to the current asset value.

Note that the expository compound option model has its limitations. It only considers the firm’s dividend and default option
mbedded in the stock price, ignoring the risk premiums relating to, for example, the time-varying volatility, dividend growth, and
rowth options of the firm. Nevertheless, it is a useful model for understanding the relation between firm fundamentals and the IV
urve.

.2. Firm fundamental uncertainties and the volatility risk premium

The solutions to the stock and stock option prices in Eqs. (29)–(30) are derived assuming a constant dividend, dividend growth,
nd deterministic default time. Although they help demonstrate the relation between firm fundamentals, stock price, and stock
ption prices, they have no direct relation with the most important stylized fact of stock options—the volatility risk premium. To
nvestigate the relation between firm fundamentals and the wedge between physical volatility 𝜎Q and risk-neutral volatility 𝜎P, we

consider alternative stock price specifications.
Specifically, we assume that the stock price is governed by the following process:

𝑑𝑆(𝑡)
𝑆(𝑡)

= (𝜇 − 𝑐𝑒(𝑡))𝑑𝑡 + 𝜎𝑠𝑑𝑊 (𝑡) + 𝑑𝐽 (𝑡), (33)

where dividend process 𝑐𝑒(𝑡) is driven by:

𝑑𝑐𝑒(𝑡) = 𝛿𝑐𝑒(𝑡)𝑑𝑡 + 𝜎𝑐𝑑𝑊𝑐 (𝑡). (34)

We also assume that the two Brownian motions are correlated, 𝑑𝑊 (𝑡)𝑑𝑊𝑐 (𝑡) = 𝜌𝑑𝑡. The jump term is defined as 𝑑𝐽 (𝑡) = 𝑍(𝑡)𝑑𝑁(𝑡),
here 𝑁(𝑡) is a Poisson counting process with a jump size 𝑍(𝑡) assumed to be independently and identically distributed, 𝑍(𝑡) ∼
(𝜇𝑍 , 𝜎2𝑍 ). This reduced-form specification of the stock price process is directly analogous to the structural form in Eq. (29) with

wo modifications. First, the dividend payout is assumed to be stochastic; the uncertainty associated with the dividend and dividend
rowth can, in turn, contribute to stock return volatility. Second, instead of specifying a deterministic default time of the stock, a
ump term is introduced to capture any credit-related jumps in stock prices. Notably, the jump intensity and jump size distribution
re related to the credit-sensitive fundamentals of the underlying firm.

In this model, explicit solutions exist for both 𝑆𝑡 and 𝑐𝑡:

𝑙𝑛(𝑆(𝑡)) − 𝑙𝑛(𝑆0) =(𝜇 − 1
2
𝜎2𝑠 )𝑡 −

𝑐𝑒,0
𝛿

(𝑒𝛿𝑡 − 1) + 𝜎𝑠 ∫

𝑡

0
𝑑𝑊 (𝑢) (35)

+ 1
𝜎 ∫

𝑡

0
(𝑒𝛿(𝑡−𝑢) − 1)𝜎𝑐𝑑𝑊𝑐 (𝑢) + ∫

𝑡

0
𝑑𝐽 (𝑢),

𝑐𝑒(𝑡) =𝑐𝑒(0) +
𝑡
𝑒𝛿(𝑡−𝑢)𝜎𝑐𝑑𝑊𝑐 (𝑢).
15
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Fig. 2. Change in IV curve due to change in firm characteristics. In Fig. 2, we plot the IV level, slope, and curvature as functions of option moneyness, simulated
by the compound option pricing model, with respect to change in dividend payout 𝑐𝑒 in Panel A, time to default 𝑇𝑒 in Panel B, face value of the debt of a firm
𝐵 in Panel C, and book-to-market ratio in Panel D, respectively. We use 𝑉𝑡 = 100, 𝐵 = 65, 𝑟 = 0.01, 𝜎 = 0.2, 𝑇𝑒 = 5, 𝑇𝑝 = 0.25, 𝑐𝑒 = 1, 𝑐 = 0.025, and 𝑔 = 0.002 as
the basis of the parameters used in the simulation.

We are only interested in the unconditional variance of the stock log return 𝑟𝜏 (𝑡) over 𝜏 period. Under physical measure P, the
variance can be computed as follows:

𝑉 𝑎𝑟P(𝑟𝜏 (𝑡)) =

(

𝜎2𝑠 +
𝜎2𝑐
𝛿2

+
𝜌𝜎𝑠𝜎𝑐
𝛿

)

𝜏 +
𝜎2𝑐
𝛿3

(

2𝑒−𝛿𝜏 − 1
2
𝑒−2𝛿𝜏 − 3

2

)

(36)

+
2𝜌𝜎𝑠𝜎𝑐
𝛿2

(

1 − 𝑒−𝛿𝜏
)

+ 𝜆𝜏𝜎2𝑗 .

Under the risk-neutral measure, we can define the risk-neutral parameters 𝛿Q and 𝜆Q owing to the uncertainty of these fundamental
measures. For example, Buraschi et al. (2014) shows that dividend and dividend growth uncertainty and investor disagreement about
these uncertainties produce the variance risk premium for individual stock options. Empirical evidence also supports the existence
16
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Table 9
Regression results for call options.

Level Slope Curvature

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

HV (%) 73.84*** 18.66*** 18.97*** 71.86*** 5.23*** −0.69 −0.19 4.63*** 2.39*** −1.67*** −1.03 2.12***
38.31 4.99 4.80 32.75 6.19 −1.06 −0.31 6.38 10.44 −2.57 −1.63 7.86

NS (%) 5.17*** 4.00*** 4.00*** 5.00*** 5.32*** 4.85*** 4.85*** 5.25*** 1.35*** 1.17*** 1.16*** 1.33***
8.41 8.18 8.20 8.62 20.39 18.71 18.67 20.08 7.20 5.57 5.50 6.93

NK (%) −1.58*** −1.50** −1.49** −1.57*** 2.82*** 2.64*** 2.65*** 2.81*** 1.77*** 1.67*** 1.68*** 1.76***
−6.94 −10.06 −10.10 −7.16 31.11 26.60 26.61 30.68 18.26 20.32 20.19 18.33

ill (%) 1.54*** 1.21*** 1.21*** −0.44*** −0.20* −0.17 −0.75** −0.52** −0.49**
8.89 8.51 8.36 −2.84 −1.70 −1.54 −2.46 −2.40 −2.44

beta (%) 2.83*** 1.76*** 1.68*** −0.71*** −0.05 0.22 −0.25*** 0.21*** 0.44***
6.96 5.61 6.98 −12.83 −0.77 1.63 −4.72 3.37 4.08

mve (%) −3.79*** −3.60*** −3.59*** −3.19*** −2.24*** −2.19*** −1.92*** −1.53*** −1.48***
−7.96 −9.23 −9.08 −8.25 −6.18 −6.24 −2.63 −2.55 −2.62

dy (%) −0.15 −0.12 −0.11 0.56*** 0.24*** 0.25** 0.31*** 0.16*** 0.16***
−1.47 −1.50 −1.39 9.74 6.57 6.73 9.26 5.26 5.40

stdcf (%) 0.58*** 0.58*** 0.57*** 0.09 0.06 0.07 0.06 0.02 0.03
5.38 5.20 5.20 1.65 1.41 1.55 1.06 0.60 0.75

sue (%) −0.09 −0.09 −0.09 −0.04 −0.03 −0.03 −0.02 −0.02 −0.02
−1.33 −1.29 −1.27 −1.61 −1.41 −1.41 −1.22 −1.16 −1.11

rd_sale (%) 0.99*** 1.02*** 1.03*** 0.18*** 0.12** 0.12** 0.12** 0.074* 0.08**
7.47 7.80 7.85 2.95 2.32 2.33 2.93 1.88 2.01

sfe (%) −1.14*** −1.07*** −1.08*** 0.20*** 0.20*** 0.19*** 0.24*** 0.22*** 0.21***
−6.76 −6.53 −6.56 4.30 4.57 4.51 4.25 3.83 3.79

idiovol (%) 11.14*** 6.90*** 6.85*** −0.89*** 0.40*** 0.05 −1.02*** 0.21** −0.14
21.95 10.41 8.64 −6.80 2.92 0.43 −3.21 2.02 −1.00

roavol (%) 1.02*** 0.86*** 0.85*** −0.16*** −0.07* −0.08* −0.17*** −0.07 −0.079*
11.13 10.12 10.17 −3.03 −1.70 −1.85 −2.92 −1.63 −1.75

depr (%) 0.29*** 0.26*** 0.26*** 0.08* 0.07** 0.08** 0.02 0.02 0.02
5.04 5.19 5.25 1.71 2.12 2.22 0.69 0.98 1.21

nanalyst (%) 0.60*** 0.19* 0.19* −0.30*** 0.04 0.03 −0.30*** 0.03 0.02
4.83 1.84 1.88 −3.05 0.69 0.41 −2.64 0.85 0.47

std_turn (%) 0.12 0.10 0.09 −0.44** −0.34*** −0.35*** −0.13** −0.08* −0.09**
1.26 1.02 0.96 −6.88 −6.37 −6.33 −2.44 −1.95 −2.03

Sys (%) 0.18 −6.79* −3.09*** −4.65** −2.58*** −1.74***
0.10 −1.95 −3.62 −7.02 −3.84 −3.11

Adj R2 (%) 60.41 64.43 67.27 67.32 60.92 25.08 8.09 28.05 28.08 25.33 13.84 4.63 15.79 15.83 13.96

This table reports the cross-sectional regressions results, regressing IV function characteristics on realized volatility, implied moments, fundamental measures, and systematic risk ratio:
𝐼𝑉 𝑖

𝑗𝑡 = 𝛼𝑡 + 𝛽0,𝑡𝑀𝑗𝑡 + 𝛽1,𝑡𝐹𝑗𝑡 + 𝛽2,𝑡𝑆𝑦𝑠𝑗𝑡 + 𝜖𝑖𝑗𝑡 ,

here 𝐼𝑉 𝑖
𝑗𝑡 represents one of the level, slope and curvature of the IV function captured by 𝐼𝑉𝐴𝑇𝑀 , 𝐼𝑉𝑂𝑇𝑀 − 𝐼𝑉𝐴𝑇𝑀 , and (𝐼𝑉𝐼𝑇𝑀 + 𝐼𝑉𝑂𝑇𝑀 )∕2 − 𝐼𝑉𝐴𝑇𝑀 respectively. ITM, ATM, and OTM

options are with delta of 0.8, 0.5, and 0.2, respectively. Specification (1) is the benchmark model considering only 𝑀𝑗𝑡 , the vector containing historical volatility, risk-neutral skewness and kurtosis,
whilst specification (2) only considers firm fundamental vector 𝐹𝑗𝑡 . Specification (4) considers all the market and fundamental measures, as well as the systematic risk ratio 𝑆𝑦𝑠𝑗𝑡 . Specification (3)
and (5) are cases without the systematic risk ratio and the firm fundamental vector, respectively. On each month we first obtain the intercept and other coefficients, these coefficients are then
averaged and the corresponding 𝑡-statistic is calculated using the Newey–West standard errors with 12 lags. The sample period is from 1996 to 2019.

of the jump risk premium (Pan, 2002; Orłowski et al., 2020). Therefore, we are able to produce a wedge between the variances in
P and Q.

5. Robustness tests

In the sections above, we use 30-day put options for the main analysis. In the robustness tests, we obtain the results with 30-day
calls and 60-day puts. We also run Bayesian shrinkage cross-sectional regressions to moderate the concerns about multicollinearity
and non-linear relations, in line with Bai and Wu (2016).

5.1. Other options

We report the results of the main regression using alternative options. Table 9 shows the regression results for 30-day calls, and
Table 10 shows the results for 60-day puts. Our conclusions remain unchanged. Fundamentals play a significant role in explaining
the IV curve of call options and longer-dated puts; they play an even larger role in determining the IV slope of calls than that of
puts.

5.2. Bayesian shrinkage regression

Concerns about our above empirical tests include possible nonlinearity, missing observations, and multicollinearity among firm
fundamentals. A Bayesian shrinkage method, proposed by Bai and Wu (2016), is useful in circumventing these issues by generating
a weighted average valuation. Specifically, the contributions of each firm fundamental measure to the option IV curve shapes are
expressed in terms of univariate local linear regression estimates. These estimates are then stacked using weights calculated and
updated by a Bayesian regression controlled by a degree of intertemporal smoothness parameter. Karolyi (1993) applies a similar
approach for volatility estimation and notes an improvement in the option valuation. Details are in Appendix.

The Bayesian approach allows us to examine the explanatory powers over time. In Fig. 3, we plot the time series of the R2 from
the cross-sectional Bayesian shrinkage regression. The solid line denotes the benchmark model and the dashed line denotes the
model with fundamentals. Clearly, the model with firm fundamentals outperforms the benchmark model with a larger and more
stable explanatory power across different periods. Table 11 reports the summary of the R2 estimates. On average, the benchmark
model generates a 0.69, 0.29, and 0.19 R2 for the volatility level, slope, and curvature, respectively. The model incorporating firm
fundamentals significantly improves the performance to 0.76, 0.36, and 0.26, respectively.
17
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Table 10
Regression results for 60-day put options.

Level Slope Curvature

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

HV (%) 78.07*** 21.56*** 21.61*** 75.88*** 2.96*** −2.27*** −1.38* 2.68*** 2.39*** 0.51 1.12** 2.00***
26.32 5.30 5.10 25.54 4.96 −2.90 −1.71 3.70 10.10 0.99 2.19 6.34

NS (%) 1.20*** 0.02 0.03 0.99** −2.87*** −3.01*** −3.03*** −2.87*** −0.79*** −0.95*** −0.96*** −0.83***
4.79 0.13 0.18 4.80 −10.79 −10.82 −10.82 −11.13 −5.23 −6.00 −6.01 −5.52

NK (%) −2.26*** −2.16** −2.16** −2.24*** 0.70*** 0.62*** 0.63*** 0.70*** 0.73*** 0.65*** 0.66*** 0.72***
−6.72 −8.71 −8.80 −6.92 13.03 9.90 10.04 13.27 21.20 17.07 17.26 21.77

ill (%) 1.43*** 1.16*** 1.15*** −0.35*** −0.18* −0.14 −0.34*** −0.22** −0.20**
8.19 7.99 8.10 −2.80 −1.84 −1.53 −2.97 −2.39 −2.28

beta (%) 2.80*** 1.52*** 1.34*** 0.21** 0.40*** 0.77*** −0.18*** −0.05 0.16**
6.92 4.61 4.80 2.19 3.84 5.51 −3.20 −0.97 2.33

mve (%) −2.77*** −3.09*** −3.11*** −1.30*** −1.56*** −1.48*** −1.06*** −1.06*** −1.01***
−9.83 −12.50 −12.24 −3.64 −3.91 −3.86 −5.12 −4.77 −4.81

dy (%) −0.04 0.13* 0.13* 0.10*** 0.11*** 0.12*** 0.37*** 0.33*** 0.33***
−0.52 1.75 1.71 3.11 3.41 3.70 18.61 10.58 10.60

stdcf (%) 0.58*** 0.58*** 0.58*** 0.06 0.06 0.07 0.08** 0.07** 0.07**
7.04 7.07 7.02 1.13 1.19 1.43 2.13 2.06 2.23

sue (%) −0.09 −0.09 −0.09 −0.06*** −0.06*** −0.06*** −0.07*** −0.07*** −0.06***
−1.34 −1.26 −1.24 −2.70 −2.90 −2.79 −4.23 −4.07 −3.95

rd_sale (%) 1.15*** 1.20*** 1.20*** 0.01 −0.01 0.00 0.06* 0.05 0.05
8.90 9.28 9.38 0.18 −0.14 −0.02 1.89 1.49 1.62

sfe (%) −1.37*** −1.30*** −1.30*** 0.33*** 0.32*** 0.31*** 0.15*** 0.14*** 0.13***
−7.49 −7.09 −7.13 9.62 8.05 7.80 5.87 5.38 5.11

idiovol (%) 12.10*** 7.42*** 7.56*** −0.71*** 0.30 −0.26 −0.32*** 0.05 −0.26**
20.18 11.22 10.18 −2.80 1.50 −1.10 −2.56 0.51 −2.25

roavol (%) 1.28*** 1.16*** 1.16*** −0.28*** −0.18*** −0.19*** −0.05* 0.01 0.00
9.62 9.54 9.52 −3.86 −2.93 −3.05 −1.92 0.44 0.11

depr (%) 0.23*** 0.21*** 0.21*** 0.04 0.06 0.07 0.02 0.04* 0.04*
4.47 4.19 4.26 1.08 1.43 1.60 1.20 1.77 1.96

nanalyst (%) 0.43*** 0.07 0.08 −0.13 0.13*** 0.10* −0.03 0.14*** 0.12***
3.65 0.76 0.91 −1.50 2.48 1.91 −0.51 3.54 3.10

std_turn (%) 0.34*** 0.25*** 0.25*** −0.13*** −0.14*** −0.16*** 0.03 0.03 0.02
4.06 3.00 3.00 −2.68 −3.30 −3.41 1.60 1.55 1.09

Sys (%) 0.81 −8.70*** −3.91*** −1.07 −2.31*** −2.74***
0.53 −2.64 −4.54 −1.20 −4.19 −5.21

Adj R2 (%) 66.22 71.26 73.39 73.43 66.84 8.25 4.15 11.37 11.48 8.49 5.06 3.39 7.55 7.61 5.37

This table reports the cross-sectional regressions results, regressing IV function characteristics on realized volatility, implied moments, fundamental measures, and systematic risk ratio:
𝐼𝑉 𝑖

𝑗𝑡 = 𝛼𝑡 + 𝛽0,𝑡𝑀𝑗𝑡 + 𝛽1,𝑡𝐹𝑗𝑡 + 𝛽2,𝑡𝑆𝑦𝑠𝑗𝑡 + 𝜖𝑖𝑗𝑡 ,

here 𝐼𝑉 𝑖
𝑗𝑡 represents one of the level, slope and curvature of the IV function captured by 𝐼𝑉𝐴𝑇𝑀 , 𝐼𝑉𝑂𝑇𝑀 −𝐼𝑉𝐴𝑇𝑀 , and (𝐼𝑉𝐼𝑇𝑀 +𝐼𝑉𝑂𝑇𝑀 )∕2−𝐼𝑉𝐴𝑇𝑀 respectively. ITM, ATM, and OTM options

are with delta of −0.8, −0.5, and −0.2, respectively. Specification (1) is the benchmark model considering only 𝑀𝑗𝑡 , the vector containing historical volatility, risk-neutral skewness and kurtosis,
whilst specification (2) only considers firm fundamental vector 𝐹𝑗𝑡 . Specification (4) considers all the market and fundamental measures, as well as the systematic risk ratio 𝑆𝑦𝑠𝑗𝑡 . Specification (3)
and (5) are cases without the systematic risk ratio and the firm fundamental vector, respectively. On each month we first obtain the intercept and other coefficients, these coefficients are then
averaged and the corresponding 𝑡-statistic is calculated using the Newey–West standard errors with 12 lags. The sample period is from 1996 to 2019.

Table 11
Cross-sectional explanatory powers.

Model Level Slope Curvature

Panel A: Cross-sectional R2

HIV 0.69 0.29 0.19
FIV 0.76 0.36 0.26

Panel B: R2 difference (%)

FIV-HIV 7.21*** 7.35*** 7.04***
18.31 20.08 12.38

This table reports the cross-sectional R2 from the Bayesian shrinkage regression. Panel A reports
the R2 and panel B reports the difference between HIV and FIV, where HIV represents the bench-
mark model considering only the vector containing historical volatility, risk-neutral skewness, and
kurtosis, and FIV represents the model considering both the market and fundamental measures.

The superior performance highlights the overall contribution of the fundamentals incorporated in the Bayesian shrinkage method.
By construction, this method provides the time-varying marginal contribution of each fundamental by estimating the weight
in Eq. (A.5). In Fig. 4, we plot the weights for the IV slope only, but the weights for the IV level and curvature are similar. The
weights show the marginal contributions of each fundamental in explaining the difference between the market observed slopes and
the slopes estimated by the benchmark model. The highest positive weights are reflected by the illiquidity, unexpected quarterly
earnings and cash flow volatility, suggesting that these fundamentals contribute more to the variation of volatility slopes among
firms. Overall, we find that the contributions of firm fundamentals increase during the 1998–1999 Asian crisis and the 2008–2009
credit crunch crisis. This finding confirms the ‘‘wake-up call’’ hypothesis that investors focus more on fundamentals during the crises
(Bekaert et al., 2014).

In summary, the Bayesian shrinkage regression collaborates with our findings that firm fundamentals are indeed related to the
IV level, slope, and curvature.

6. Conclusion

While firm fundamentals are shown to be important in mainstream asset pricing in explaining the cross-section of expected stock
returns, little is known on how they influence the IV curve. Our paper fills this gap in the literature in two ways. First, we show
18
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Fig. 3. Time series of R2 from cross-sectional regressions. In Fig. 3, we plot the time series of the R2 from the cross-sectional Bayesian shrinkage regression
of 30-day put options. The plot from the top to the bottom is for the IV level, slope, and curvature, respectively. The solid line is for the benchmark model
considering only the vector containing historical volatility, risk-neutral skewness, and kurtosis, and the dashed line is for the model considering both the market
and fundamental measures.

Fig. 4. Weight on each firm fundamental measure for IV slope. In Fig. 4, we plot the time series of the weights for each firm fundamental measure from the
cross-sectional Bayesian shrinkage regression, in explaining the difference between the market observed slopes and the slopes estimated by the benchmark model.

empirically, via machine learning tools, that it is important to incorporate firm fundamentals in the modeling of the equity option
IV curve based on data from all available U.S. listed firms. Next, we illustrate the role of firm fundamentals in a simple structural
model via simulations.

Although the benchmark model with historical volatility, risk-neutral skewness, and kurtosis has excellent explanatory power
n the variation of the IV shape (Bakshi et al., 2003), we find that incorporating firm fundamentals provides substantial additional
xplanatory power across all the IV characteristics’ measures. Our results are consistent with the findings of asset pricing studies
hat firm fundamentals matter in the cross-section of expected returns, such as factor pricing (Fama and French, 2015), and are also
onsistent with the recent growing literature on demand-based asset pricing (Koijen and Yogo, 2019).

From an investment perspective, models incorporating firm fundamentals are also superior to the benchmark model. This is
ecause the model with the firm fundamentals can yield significant economic gains vis-à-vis models ignoring them. These models also
eepen our understanding of certain stylized facts and option puzzles. Future research may extend our methodology to other markets,
uch as foreign exchanges. Admittedly, our model is largely expository, hence future research may provide more sophisticated models
hat incorporate both fundamentals and more complex option features such as stochastic volatility and jumps.

ata availability

Data will be made available on request.
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Appendix. Bayesian shrinkage regression model

We use the same procedure developed in Bai and Wu (2016) to run a Bayesian shrinkage regression. On each month, we start
ith fitting the IV level, slope, and curvature cross-sectionally by a non-parametric regression:

𝐼𝑉 𝑖
𝑡 = 𝑓 𝑖(𝐻𝑉𝑡, 𝑁𝑆𝑡, 𝑁𝐾𝑡) + 𝜖𝑖𝑡 , 𝑖 = ◦, 𝑠, 𝑐, (A.1)

where 𝑓 𝑖(.) denotes a local linear regression.
We then use this as the benchmark model, and examine the additional explanatory power of each firm fundamental measure to

he IV shape characteristics. We denote the benchmark model by 𝐻𝐼𝑉 𝑖
𝑡 and let 𝐹𝑡 denote the (𝐽 ×𝐾) matrix of 𝐾 firm fundamentals

n 𝐽 firms at time 𝑡. On each date, we orthogonalize the additional contribution of fundamentals to the IV characteristics from the
enchmark model by applying a local linear regression on each firm’s fundamentals against 𝐻𝐼𝑉 𝑖

𝑡 :

𝐹 𝑘
𝑡 = 𝑓 𝑖,𝑘

𝑡 (𝐻𝐼𝑉 𝑖
𝑡 ) + 𝑥𝑖,𝑘𝑡 , 𝑖 = ◦, 𝑠, 𝑐, 𝑘 = 1,… , 𝐾. (A.2)

ext, we regress residues of the benchmark model 𝜖𝑖𝑡 against these orthogonalized fundamentals 𝑥𝑖,𝑘𝑡 by another local linear
egression:

𝜖𝑖𝑡 = 𝑓 𝑖,𝑘
𝑡 (𝑥𝑖,𝑘𝑡 ) + 𝜀𝑖,𝑘𝑡 , 𝑖 = ◦, 𝑠, 𝑐, 𝑘 = 1,… , 𝐾. (A.3)

e then stack the predictions on the residues of the benchmark model from each orthogonalized firm fundamental into a matrix
orm:

𝑋𝑖
𝑡 =

[

𝜖 𝑖,1
𝑡 ⋯ 𝜖 𝑖,𝐾

𝑡

]

, (A.4)

uch that their weighting of contribution to the overall residue 𝑊 𝑖
𝑡 can be estimated via

𝜖𝑖𝑡 = 𝑋𝑖
𝑡𝑊

𝑖
𝑡 + 𝜀𝑖𝑡. (A.5)

Given that a firm’s fundamentals are not always available in full, the predictions to the residues of the benchmark model from
he missing firm fundamentals at certain time 𝑡 is approximated by the average of the predictions from other fundamental measures

weighted according to 𝑅2 from the regression described in Eq. (A.3). For 𝑗th firm at time 𝑡, if 𝑙th firm characteristic is missing, its
residue prediction on 𝑖th IV characteristic is approximated by the residue predictions from 𝐾̃ available firm characteristics:

𝜖𝑖,𝑗,𝑙𝑡 =
𝐾̃
∑

𝑘=1
𝑤𝑖,𝑘

𝑡 𝜖 𝑖,𝑗,𝑘
𝑡 , (A.6)

𝑤 = 𝜺⊤
(

𝜺𝜺⊤ + diag
⟨

1 − 𝑅2⟩)−1 . (A.7)

After completing the residue prediction matrix 𝑋𝑖
𝑡 , we estimate the weighting vector 𝑊 𝑖

𝑡 at each time via a Bayesian regression
pdate:

𝑊 𝑖
𝑡 =

(

𝑋𝑖
𝑡
⊤𝑋𝑖

𝑡 + 𝑃 𝑖
𝑡−1

)−1 (
𝑋𝑖

𝑡
⊤𝜖𝑖𝑡 + 𝑃 𝑖

𝑡−1𝑊
𝑖
𝑡−1

)

, (A.8)

𝑃 𝑖
𝑡 = diag

⟨(

𝑋𝑖
𝑡
⊤𝑋𝑖

𝑡 + 𝑃 𝑖
𝑡−1

)

𝜙
⟩

. (A.9)

tarting with equal weights, we take the weights estimated on last period as prior, and update our beliefs on the weights according
o the residue predictions of each firm fundamental. We diagonalize the precision matrix 𝑃 𝑖

𝑡 to reduce any potential multicollinearity
ssue, and choose 𝜙 = 0.98 to control the relative weight of the prior during the updates. Once the time weights 𝑊 𝑖

𝑡 are estimated,
e can then add the weighted average of the residue prediction in Eq. (A.5) back into Eq. (A.1) such that a new set of estimations
f IV characteristics 𝐹𝐼𝑉 is calculated:

𝐹𝐼𝑉 𝑖
𝑡 = 𝑅𝐼𝑉 𝑖

𝑡 +𝑋𝑖
𝑡𝑊

𝑖
𝑡 . (A.10)

The explanatory power of firm fundamentals on its equity option IV curve characteristics are assessed by two sets of cross-
ectional regressions on each sample date, where we regress market observed IV curve characteristics on the model generated
ounterparts:

IV𝑖,𝑘
𝑡 = 𝐻𝐼𝑉 𝑖,𝑘

𝑡 + 𝜀𝑖,𝑘𝑡 , (A.11)

IV𝑖,𝑘
𝑡 = 𝐹𝐼𝑉 𝑖,𝑘

𝑡 + 𝜀𝑖,𝑘𝑡 . (A.12)

We use the regressions in Eq. (A.11) as benchmark, and check whether there are significant improvements in model fitting using
20
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